Training with multi-GPU
This commit is contained in:
parent
8a9bbc2634
commit
9fe6ad11f0
|
@ -0,0 +1 @@
|
||||||
|
from .audio import AudioProcessor
|
|
@ -0,0 +1,261 @@
|
||||||
|
import librosa
|
||||||
|
import soundfile as sf
|
||||||
|
import numpy as np
|
||||||
|
import scipy.io
|
||||||
|
import scipy.signal
|
||||||
|
|
||||||
|
class AudioProcessor(object):
|
||||||
|
def __init__(self,
|
||||||
|
sample_rate=None, # int, sampling rate
|
||||||
|
num_mels=None, # int, bands of mel spectrogram
|
||||||
|
min_level_db=None, # float, minimum level db
|
||||||
|
ref_level_db=None, # float, reference level dbn
|
||||||
|
n_fft=None, # int: number of samples in a frame for stft
|
||||||
|
win_length=None, # int: the same meaning with n_fft
|
||||||
|
hop_length=None, # int: number of samples between neighboring frame
|
||||||
|
power=None, # float:power to raise before griffin-lim
|
||||||
|
preemphasis=None, # float: preemphasis coefficident
|
||||||
|
signal_norm=None, #
|
||||||
|
symmetric_norm=False, # bool, apply clip norm in [-max_norm, max_form]
|
||||||
|
max_norm=None, # float, max norm
|
||||||
|
mel_fmin=None, # int: mel spectrogram's minimum frequency
|
||||||
|
mel_fmax=None, # int: mel spectrogram's maximum frequency
|
||||||
|
clip_norm=True, # bool: clip spectrogram's norm
|
||||||
|
griffin_lim_iters=None, # int:
|
||||||
|
do_trim_silence=False, # bool: trim silience
|
||||||
|
sound_norm=False,
|
||||||
|
**kwargs):
|
||||||
|
self.sample_rate = sample_rate
|
||||||
|
self.num_mels = num_mels
|
||||||
|
self.min_level_db = min_level_db
|
||||||
|
self.ref_level_db = ref_level_db
|
||||||
|
|
||||||
|
# stft related
|
||||||
|
self.n_fft = n_fft
|
||||||
|
self.win_length = win_length or n_fft
|
||||||
|
# hop length defaults to 1/4 window_length
|
||||||
|
self.hop_length = hop_length or 0.25 * self.win_length
|
||||||
|
|
||||||
|
self.power = power
|
||||||
|
self.preemphasis = float(preemphasis)
|
||||||
|
|
||||||
|
self.griffin_lim_iters = griffin_lim_iters
|
||||||
|
self.signal_norm = signal_norm
|
||||||
|
self.symmetric_norm = symmetric_norm
|
||||||
|
|
||||||
|
# mel transform related
|
||||||
|
self.mel_fmin = mel_fmin
|
||||||
|
self.mel_fmax = mel_fmax
|
||||||
|
|
||||||
|
self.max_norm = 1.0 if max_norm is None else float(max_norm)
|
||||||
|
self.clip_norm = clip_norm
|
||||||
|
self.do_trim_silence = do_trim_silence
|
||||||
|
|
||||||
|
self.sound_norm = sound_norm
|
||||||
|
self.num_freq, self.frame_length_ms, self.frame_shift_ms = self._stft_parameters()
|
||||||
|
|
||||||
|
def _stft_parameters(self):
|
||||||
|
"""compute frame length and hop length in ms"""
|
||||||
|
frame_length_ms = self.win_length * 1. / self.sample_rate
|
||||||
|
frame_shift_ms = self.hop_length * 1. / self.sample_rate
|
||||||
|
num_freq = 1 + self.n_fft // 2
|
||||||
|
return num_freq, frame_length_ms, frame_shift_ms
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
"""object repr"""
|
||||||
|
cls_name_str = self.__class__.__name__
|
||||||
|
members = vars(self)
|
||||||
|
dict_str = "\n".join([" {}: {},".format(k, v) for k, v in members.items()])
|
||||||
|
repr_str = "{}(\n{})\n".format(cls_name_str, dict_str)
|
||||||
|
return repr_str
|
||||||
|
|
||||||
|
def save_wav(self, path, wav):
|
||||||
|
"""save audio with scipy.io.wavfile in 16bit integers"""
|
||||||
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
||||||
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.as_type(np.int16))
|
||||||
|
|
||||||
|
def load_wav(self, path, sr=None):
|
||||||
|
"""load wav -> trim_silence -> rescale"""
|
||||||
|
|
||||||
|
x, sr = librosa.load(path, sr=None)
|
||||||
|
assert self.sample_rate == sr, "audio sample rate: {}Hz != processor sample rate: {}Hz".format(sr, self.sample_rate)
|
||||||
|
if self.do_trim_silence:
|
||||||
|
try:
|
||||||
|
x = self.trim_silence(x)
|
||||||
|
except ValueError:
|
||||||
|
print(" [!] File cannot be trimmed for silence - {}".format(path))
|
||||||
|
if self.sound_norm:
|
||||||
|
x = x / x.max() * 0.9 # why 0.9 ?
|
||||||
|
return x
|
||||||
|
|
||||||
|
def trim_silence(self, wav):
|
||||||
|
"""Trim soilent parts with a threshold and 0.01s margin"""
|
||||||
|
margin = int(self.sample_rate * 0.01)
|
||||||
|
wav = wav[margin: -margin]
|
||||||
|
trimed_wav = librosa.effects.trim(wav, top_db=60, frame_length=self.win_length, hop_length=self.hop_length)[0]
|
||||||
|
return trimed_wav
|
||||||
|
|
||||||
|
def apply_preemphasis(self, x):
|
||||||
|
if self.preemphasis == 0.:
|
||||||
|
raise RuntimeError(" !! Preemphasis coefficient should be positive. ")
|
||||||
|
return scipy.signal.lfilter([1., -self.preemphasis], [1.], x)
|
||||||
|
|
||||||
|
def apply_inv_preemphasis(self, x):
|
||||||
|
if self.preemphasis == 0.:
|
||||||
|
raise RuntimeError(" !! Preemphasis coefficient should be positive. ")
|
||||||
|
return scipy.signal.lfilter([1.], [1., -self.preemphasis], x)
|
||||||
|
|
||||||
|
def _amplitude_to_db(self, x):
|
||||||
|
amplitude_min = np.exp(self.min_level_db / 20 * np.log(10))
|
||||||
|
return 20 * np.log10(np.maximum(amplitude_min, x))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _db_to_amplitude(x):
|
||||||
|
return np.power(10., 0.05 * x)
|
||||||
|
|
||||||
|
def _linear_to_mel(self, spectrogram):
|
||||||
|
_mel_basis = self._build_mel_basis()
|
||||||
|
return np.dot(_mel_basis, spectrogram)
|
||||||
|
|
||||||
|
def _mel_to_linear(self, mel_spectrogram):
|
||||||
|
inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
|
||||||
|
return np.maximum(1e-10, np.dot(inv_mel_basis, mel_spectrogram))
|
||||||
|
|
||||||
|
def _build_mel_basis(self):
|
||||||
|
"""return mel basis for mel scale"""
|
||||||
|
if self.mel_fmax is not None:
|
||||||
|
assert self.mel_fmax <= self.sample_rate // 2
|
||||||
|
return librosa.filters.mel(
|
||||||
|
self.sample_rate,
|
||||||
|
self.n_fft,
|
||||||
|
n_mels=self.num_mels,
|
||||||
|
fmin=self.mel_fmin,
|
||||||
|
fmax=self.mel_fmax)
|
||||||
|
|
||||||
|
def _normalize(self, S):
|
||||||
|
"""put values in [0, self.max_norm] or [-self.max_norm, self,max_norm]"""
|
||||||
|
if self.signal_norm:
|
||||||
|
S_norm = (S - self.min_level_db) / (-self.min_level_db)
|
||||||
|
if self.symmetric_norm:
|
||||||
|
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
|
||||||
|
if self.clip_norm:
|
||||||
|
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)
|
||||||
|
return S_norm
|
||||||
|
else:
|
||||||
|
S_norm = self.max_norm * S_norm
|
||||||
|
if self.clip_norm:
|
||||||
|
S_norm = np.clip(S_norm, 0, self.max_norm)
|
||||||
|
return S_norm
|
||||||
|
else:
|
||||||
|
return S
|
||||||
|
|
||||||
|
def _denormalize(self, S):
|
||||||
|
"""denormalize values"""
|
||||||
|
S_denorm = S
|
||||||
|
if self.signal_norm:
|
||||||
|
if self.symmetric_norm:
|
||||||
|
if self.clip_norm:
|
||||||
|
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
|
||||||
|
S_denorm = (S_denorm + self.max_norm) * (-self.min_level_db) / (2 * self.max_norm) + self.min_level_db
|
||||||
|
return S_denorm
|
||||||
|
else:
|
||||||
|
if self.clip_norm:
|
||||||
|
S_denorm = np.clip(S_denorm, 0, self.max_norm)
|
||||||
|
S_denorm = S_denorm * (-self.min_level_db)/ self.max_norm + self.min_level_db
|
||||||
|
return S_denorm
|
||||||
|
else:
|
||||||
|
return S
|
||||||
|
|
||||||
|
def _stft(self, y):
|
||||||
|
return librosa.stft(
|
||||||
|
y=y,
|
||||||
|
n_fft=self.n_fft,
|
||||||
|
win_length=self.win_length,
|
||||||
|
hop_length=self.hop_length)
|
||||||
|
|
||||||
|
def _istft(self, S):
|
||||||
|
return librosa.istft(S, hop_length=self.hop_length, win_length=self.win_length)
|
||||||
|
|
||||||
|
def spectrogram(self, y):
|
||||||
|
"""compute linear spectrogram(amplitude)
|
||||||
|
preemphasis -> stft -> mag -> amplitude_to_db -> minus_ref_level_db -> normalize
|
||||||
|
"""
|
||||||
|
if self.preemphasis:
|
||||||
|
D = self._stft(self.apply_preemphasis(y))
|
||||||
|
else:
|
||||||
|
D = self._stft(y)
|
||||||
|
S = self._amplitude_to_db(np.abs(D)) - self.ref_level_db
|
||||||
|
return self._normalize(S)
|
||||||
|
|
||||||
|
def melspectrogram(self, y):
|
||||||
|
"""compute linear spectrogram(amplitude)
|
||||||
|
preemphasis -> stft -> mag -> mel_scale -> amplitude_to_db -> minus_ref_level_db -> normalize
|
||||||
|
"""
|
||||||
|
if self.preemphasis:
|
||||||
|
D = self._stft(self.apply_preemphasis(y))
|
||||||
|
else:
|
||||||
|
D = self._stft(y)
|
||||||
|
S = self._amplitude_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
||||||
|
return self._normalize(S)
|
||||||
|
|
||||||
|
def inv_spectrogram(self, spectrogram):
|
||||||
|
"""convert spectrogram back to waveform using griffin_lim in librosa"""
|
||||||
|
S = self._denormalize(spectrogram)
|
||||||
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
||||||
|
if self.preemphasis:
|
||||||
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
||||||
|
return self._griffin_lim(S ** self.power)
|
||||||
|
|
||||||
|
def inv_melspectrogram(self, mel_spectrogram):
|
||||||
|
S = self._denormalize(mel_spectrogram)
|
||||||
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
||||||
|
S = self._linear_to_mel(np.abs(S))
|
||||||
|
if self.preemphasis:
|
||||||
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
||||||
|
return self._griffin_lim(S ** self.power)
|
||||||
|
|
||||||
|
def out_linear_to_mel(self, linear_spec):
|
||||||
|
"""convert output linear spec to mel spec"""
|
||||||
|
S = self._denormalize(linear_spec)
|
||||||
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
||||||
|
S = self._linear_to_mel(np.abs(S))
|
||||||
|
S = self._amplitude_to_db(S) - self.ref_level_db
|
||||||
|
mel = self._normalize(S)
|
||||||
|
return mel
|
||||||
|
|
||||||
|
def _griffin_lim(self, S):
|
||||||
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
||||||
|
S_complex = np.abs(S).astype(np.complex)
|
||||||
|
y = self._istft(S_complex * angles)
|
||||||
|
for _ in range(self.griffin_lim_iters):
|
||||||
|
angles = np.exp(1j * np.angle(self._stft(y)))
|
||||||
|
y = self._istft(S_complex * angles)
|
||||||
|
return y
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def mulaw_encode(wav, qc):
|
||||||
|
mu = 2 ** qc - 1
|
||||||
|
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
||||||
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
|
||||||
|
# Quantize signal to the specified number of levels.
|
||||||
|
signal = (signal + 1) / 2 * mu + 0.5
|
||||||
|
return np.floor(signal,)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def mulaw_decode(wav, qc):
|
||||||
|
"""Recovers waveform from quantized values."""
|
||||||
|
mu = 2 ** qc - 1
|
||||||
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def encode_16bits(x):
|
||||||
|
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def quantize(x, bits):
|
||||||
|
return (x + 1.) * (2**bits - 1) / 2
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def dequantize(x, bits):
|
||||||
|
return 2 * x / (2**bits - 1) - 1
|
|
@ -2,7 +2,8 @@ from .sampler import SequentialSampler, RandomSampler, BatchSampler
|
||||||
|
|
||||||
class DataCargo(object):
|
class DataCargo(object):
|
||||||
def __init__(self, dataset, batch_size=1, sampler=None,
|
def __init__(self, dataset, batch_size=1, sampler=None,
|
||||||
shuffle=False, batch_sampler=None, drop_last=False):
|
shuffle=False, batch_sampler=None, collate_fn=None,
|
||||||
|
drop_last=False):
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
|
|
||||||
if batch_sampler is not None:
|
if batch_sampler is not None:
|
||||||
|
@ -21,13 +22,20 @@ class DataCargo(object):
|
||||||
sampler = RandomSampler(dataset)
|
sampler = RandomSampler(dataset)
|
||||||
else:
|
else:
|
||||||
sampler = SequentialSampler(dataset)
|
sampler = SequentialSampler(dataset)
|
||||||
# auto_collation without custom batch_sampler
|
|
||||||
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
||||||
|
else:
|
||||||
|
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
||||||
|
|
||||||
|
self.batch_sampler = batch_sampler
|
||||||
|
|
||||||
|
if collate_fn is None:
|
||||||
|
collate_fn = dataset._batch_examples
|
||||||
|
self.collate_fn = collate_fn
|
||||||
|
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.drop_last = drop_last
|
self.drop_last = drop_last
|
||||||
self.sampler = sampler
|
self.sampler = sampler
|
||||||
self.batch_sampler = batch_sampler
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return DataIterator(self)
|
return DataIterator(self)
|
||||||
|
@ -57,6 +65,7 @@ class DataIterator(object):
|
||||||
|
|
||||||
self._index_sampler = loader._index_sampler
|
self._index_sampler = loader._index_sampler
|
||||||
self._sampler_iter = iter(self._index_sampler)
|
self._sampler_iter = iter(self._index_sampler)
|
||||||
|
self.collate_fn = loader.collate_fn
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return self
|
return self
|
||||||
|
@ -64,7 +73,7 @@ class DataIterator(object):
|
||||||
def __next__(self):
|
def __next__(self):
|
||||||
index = self._next_index() # may raise StopIteration, TODO(chenfeiyu): use dynamic batch size
|
index = self._next_index() # may raise StopIteration, TODO(chenfeiyu): use dynamic batch size
|
||||||
minibatch = [self._dataset[i] for i in index] # we can abstract it, too to use dynamic batch size
|
minibatch = [self._dataset[i] for i in index] # we can abstract it, too to use dynamic batch size
|
||||||
minibatch = self._dataset._batch_examples(minibatch) # list[Example] -> Batch
|
minibatch = self.collate_fn(minibatch)
|
||||||
return minibatch
|
return minibatch
|
||||||
|
|
||||||
def _next_index(self):
|
def _next_index(self):
|
||||||
|
|
|
@ -20,7 +20,7 @@ epochs: 10000
|
||||||
lr: 0.001
|
lr: 0.001
|
||||||
save_step: 500
|
save_step: 500
|
||||||
use_gpu: True
|
use_gpu: True
|
||||||
use_data_parallel: False
|
use_data_parallel: True
|
||||||
|
|
||||||
data_path: ../../../dataset/LJSpeech-1.1
|
data_path: ../../../dataset/LJSpeech-1.1
|
||||||
save_path: ./checkpoint
|
save_path: ./checkpoint
|
||||||
|
|
|
@ -21,7 +21,7 @@ lr: 0.001
|
||||||
save_step: 500
|
save_step: 500
|
||||||
image_step: 2000
|
image_step: 2000
|
||||||
use_gpu: True
|
use_gpu: True
|
||||||
use_data_parallel: False
|
use_data_parallel: True
|
||||||
|
|
||||||
data_path: ../../../dataset/LJSpeech-1.1
|
data_path: ../../../dataset/LJSpeech-1.1
|
||||||
save_path: ./checkpoint
|
save_path: ./checkpoint
|
||||||
|
|
|
@ -0,0 +1,29 @@
|
||||||
|
from pathlib import Path
|
||||||
|
import numpy as np
|
||||||
|
from paddle import fluid
|
||||||
|
from parakeet.data.sampler import DistributedSampler
|
||||||
|
from parakeet.data.datacargo import DataCargo
|
||||||
|
from preprocess import batch_examples, LJSpeech, batch_examples_postnet
|
||||||
|
|
||||||
|
class LJSpeechLoader:
|
||||||
|
def __init__(self, config, nranks, rank, is_postnet=False):
|
||||||
|
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
|
||||||
|
|
||||||
|
LJSPEECH_ROOT = Path(config.data_path)
|
||||||
|
dataset = LJSpeech(LJSPEECH_ROOT)
|
||||||
|
sampler = DistributedSampler(len(dataset), nranks, rank)
|
||||||
|
|
||||||
|
assert config.batch_size % nranks == 0
|
||||||
|
each_bs = config.batch_size // nranks
|
||||||
|
if is_postnet:
|
||||||
|
dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=True, collate_fn=batch_examples_postnet, drop_last=True)
|
||||||
|
else:
|
||||||
|
dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=True, collate_fn=batch_examples, drop_last=True)
|
||||||
|
|
||||||
|
self.reader = fluid.io.DataLoader.from_generator(
|
||||||
|
capacity=32,
|
||||||
|
iterable=True,
|
||||||
|
use_double_buffer=True,
|
||||||
|
return_list=True)
|
||||||
|
self.reader.set_batch_generator(dataloader, place)
|
||||||
|
|
|
@ -130,7 +130,7 @@ class EncoderPrenet(dg.Layer):
|
||||||
self.projection = FC(self.full_name(), num_hidden, num_hidden)
|
self.projection = FC(self.full_name(), num_hidden, num_hidden)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.embedding(fluid.layers.unsqueeze(x, axes=[-1])) #(batch_size, seq_len, embending_size)
|
x = self.embedding(x) #(batch_size, seq_len, embending_size)
|
||||||
x = layers.transpose(x,[0,2,1])
|
x = layers.transpose(x,[0,2,1])
|
||||||
x = layers.dropout(layers.relu(self.batch_norm1(self.conv1(x))), 0.2)
|
x = layers.dropout(layers.relu(self.batch_norm1(self.conv1(x))), 0.2)
|
||||||
x = layers.dropout(layers.relu(self.batch_norm2(self.conv2(x))), 0.2)
|
x = layers.dropout(layers.relu(self.batch_norm2(self.conv2(x))), 0.2)
|
||||||
|
@ -211,8 +211,9 @@ class ScaledDotProductAttention(dg.Layer):
|
||||||
# Mask key to ignore padding
|
# Mask key to ignore padding
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
attention = attention * mask
|
attention = attention * mask
|
||||||
mask = (mask == 0).astype(float) * (-2 ** 32 + 1)
|
mask = (mask == 0).astype(np.float32) * (-2 ** 32 + 1)
|
||||||
attention = attention + mask
|
attention = attention + mask
|
||||||
|
|
||||||
|
|
||||||
attention = layers.softmax(attention)
|
attention = layers.softmax(attention)
|
||||||
# Mask query to ignore padding
|
# Mask query to ignore padding
|
||||||
|
|
|
@ -7,9 +7,9 @@ class Encoder(dg.Layer):
|
||||||
def __init__(self, name_scope, embedding_size, num_hidden, config):
|
def __init__(self, name_scope, embedding_size, num_hidden, config):
|
||||||
super(Encoder, self).__init__(name_scope)
|
super(Encoder, self).__init__(name_scope)
|
||||||
self.num_hidden = num_hidden
|
self.num_hidden = num_hidden
|
||||||
param = fluid.ParamAttr(name='alpha')
|
param = fluid.ParamAttr(name='alpha',
|
||||||
self.alpha = self.create_parameter(param, shape=(1, ), dtype='float32',
|
initializer=fluid.initializer.Constant(value=1.0))
|
||||||
default_initializer = fluid.initializer.ConstantInitializer(value=1.0))
|
self.alpha = self.create_parameter(param, shape=(1, ), dtype='float32')
|
||||||
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
||||||
self.pos_emb = dg.Embedding(name_scope=self.full_name(),
|
self.pos_emb = dg.Embedding(name_scope=self.full_name(),
|
||||||
size=[1024, num_hidden],
|
size=[1024, num_hidden],
|
||||||
|
@ -31,8 +31,8 @@ class Encoder(dg.Layer):
|
||||||
|
|
||||||
def forward(self, x, positional):
|
def forward(self, x, positional):
|
||||||
if fluid.framework._dygraph_tracer()._train_mode:
|
if fluid.framework._dygraph_tracer()._train_mode:
|
||||||
query_mask = (positional != 0).astype(float)
|
query_mask = (positional != 0).astype(np.float32)
|
||||||
mask = (positional != 0).astype(float)
|
mask = (positional != 0).astype(np.float32)
|
||||||
mask = fluid.layers.expand(fluid.layers.unsqueeze(mask,[1]), [1,x.shape[1], 1])
|
mask = fluid.layers.expand(fluid.layers.unsqueeze(mask,[1]), [1,x.shape[1], 1])
|
||||||
else:
|
else:
|
||||||
query_mask, mask = None, None
|
query_mask, mask = None, None
|
||||||
|
@ -42,7 +42,7 @@ class Encoder(dg.Layer):
|
||||||
|
|
||||||
|
|
||||||
# Get positional encoding
|
# Get positional encoding
|
||||||
positional = self.pos_emb(fluid.layers.unsqueeze(positional, axes=[-1]))
|
positional = self.pos_emb(positional)
|
||||||
x = positional * self.alpha + x #(N, T, C)
|
x = positional * self.alpha + x #(N, T, C)
|
||||||
|
|
||||||
|
|
||||||
|
@ -102,14 +102,14 @@ class Decoder(dg.Layer):
|
||||||
|
|
||||||
if fluid.framework._dygraph_tracer()._train_mode:
|
if fluid.framework._dygraph_tracer()._train_mode:
|
||||||
#zeros = np.zeros(positional.shape, dtype=np.float32)
|
#zeros = np.zeros(positional.shape, dtype=np.float32)
|
||||||
m_mask = (positional != 0).astype(float)
|
m_mask = (positional != 0).astype(np.float32)
|
||||||
mask = np.repeat(np.expand_dims(m_mask.numpy() == 0, axis=1), decoder_len, axis=1)
|
mask = np.repeat(np.expand_dims(m_mask.numpy() == 0, axis=1), decoder_len, axis=1)
|
||||||
mask = mask + np.repeat(np.expand_dims(np.triu(np.ones([decoder_len, decoder_len]), 1), axis=0) ,batch_size, axis=0)
|
mask = mask + np.repeat(np.expand_dims(np.triu(np.ones([decoder_len, decoder_len]), 1), axis=0) ,batch_size, axis=0)
|
||||||
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
|
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
|
||||||
|
|
||||||
|
|
||||||
# (batch_size, decoder_len, decoder_len)
|
# (batch_size, decoder_len, decoder_len)
|
||||||
zero_mask = fluid.layers.expand(fluid.layers.unsqueeze((c_mask != 0).astype(float), axes=2), [1,1,decoder_len])
|
zero_mask = fluid.layers.expand(fluid.layers.unsqueeze((c_mask != 0).astype(np.float32), axes=2), [1,1,decoder_len])
|
||||||
# (batch_size, decoder_len, seq_len)
|
# (batch_size, decoder_len, seq_len)
|
||||||
zero_mask = fluid.layers.transpose(zero_mask, [0,2,1])
|
zero_mask = fluid.layers.transpose(zero_mask, [0,2,1])
|
||||||
|
|
||||||
|
@ -125,7 +125,7 @@ class Decoder(dg.Layer):
|
||||||
query = self.linear(query)
|
query = self.linear(query)
|
||||||
|
|
||||||
# Get position embedding
|
# Get position embedding
|
||||||
positional = self.pos_emb(fluid.layers.unsqueeze(positional, axes=[-1]))
|
positional = self.pos_emb(positional)
|
||||||
query = positional * self.alpha + query
|
query = positional * self.alpha + query
|
||||||
|
|
||||||
#positional dropout
|
#positional dropout
|
||||||
|
|
|
@ -1,13 +1,12 @@
|
||||||
from network import *
|
from network import *
|
||||||
from preprocess import batch_examples_postnet, LJSpeech
|
|
||||||
from tensorboardX import SummaryWriter
|
from tensorboardX import SummaryWriter
|
||||||
import os
|
import os
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from parakeet.data.datacargo import DataCargo
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import jsonargparse
|
import jsonargparse
|
||||||
from parse import add_config_options_to_parser
|
from parse import add_config_options_to_parser
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
|
from data import LJSpeechLoader
|
||||||
|
|
||||||
class MyDataParallel(dg.parallel.DataParallel):
|
class MyDataParallel(dg.parallel.DataParallel):
|
||||||
"""
|
"""
|
||||||
|
@ -27,21 +26,15 @@ class MyDataParallel(dg.parallel.DataParallel):
|
||||||
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main(cfg):
|
||||||
parser = jsonargparse.ArgumentParser(description="Train postnet model", formatter_class='default_argparse')
|
|
||||||
add_config_options_to_parser(parser)
|
local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0
|
||||||
cfg = parser.parse_args('-c ./config/train_postnet.yaml'.split())
|
nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1
|
||||||
|
|
||||||
local_rank = dg.parallel.Env().local_rank
|
|
||||||
|
|
||||||
if local_rank == 0:
|
if local_rank == 0:
|
||||||
# Print the whole config setting.
|
# Print the whole config setting.
|
||||||
pprint(jsonargparse.namespace_to_dict(cfg))
|
pprint(jsonargparse.namespace_to_dict(cfg))
|
||||||
|
|
||||||
LJSPEECH_ROOT = Path(cfg.data_path)
|
|
||||||
dataset = LJSpeech(LJSPEECH_ROOT)
|
|
||||||
dataloader = DataCargo(dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=batch_examples_postnet, drop_last=True)
|
|
||||||
|
|
||||||
global_step = 0
|
global_step = 0
|
||||||
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||||||
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
||||||
|
@ -50,35 +43,10 @@ def main():
|
||||||
if not os.path.exists(cfg.log_dir):
|
if not os.path.exists(cfg.log_dir):
|
||||||
os.mkdir(cfg.log_dir)
|
os.mkdir(cfg.log_dir)
|
||||||
path = os.path.join(cfg.log_dir,'postnet')
|
path = os.path.join(cfg.log_dir,'postnet')
|
||||||
writer = SummaryWriter(path)
|
|
||||||
|
|
||||||
with dg.guard(place):
|
writer = SummaryWriter(path) if local_rank == 0 else None
|
||||||
# dataloader
|
|
||||||
input_fields = {
|
|
||||||
'names': ['mel', 'mag'],
|
|
||||||
'shapes':
|
|
||||||
[[cfg.batch_size, None, 80], [cfg.batch_size, None, 257]],
|
|
||||||
'dtypes': ['float32', 'float32'],
|
|
||||||
'lod_levels': [0, 0]
|
|
||||||
}
|
|
||||||
|
|
||||||
inputs = [
|
with dg.guard(place):
|
||||||
fluid.data(
|
|
||||||
name=input_fields['names'][i],
|
|
||||||
shape=input_fields['shapes'][i],
|
|
||||||
dtype=input_fields['dtypes'][i],
|
|
||||||
lod_level=input_fields['lod_levels'][i])
|
|
||||||
for i in range(len(input_fields['names']))
|
|
||||||
]
|
|
||||||
|
|
||||||
reader = fluid.io.DataLoader.from_generator(
|
|
||||||
feed_list=inputs,
|
|
||||||
capacity=32,
|
|
||||||
iterable=True,
|
|
||||||
use_double_buffer=True,
|
|
||||||
return_list=True)
|
|
||||||
|
|
||||||
|
|
||||||
model = ModelPostNet('postnet', cfg)
|
model = ModelPostNet('postnet', cfg)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
|
@ -94,9 +62,10 @@ def main():
|
||||||
strategy = dg.parallel.prepare_context()
|
strategy = dg.parallel.prepare_context()
|
||||||
model = MyDataParallel(model, strategy)
|
model = MyDataParallel(model, strategy)
|
||||||
|
|
||||||
|
reader = LJSpeechLoader(cfg, nranks, local_rank, is_postnet=True).reader()
|
||||||
|
|
||||||
for epoch in range(cfg.epochs):
|
for epoch in range(cfg.epochs):
|
||||||
reader.set_batch_generator(dataloader, place)
|
pbar = tqdm(reader)
|
||||||
pbar = tqdm(reader())
|
|
||||||
for i, data in enumerate(pbar):
|
for i, data in enumerate(pbar):
|
||||||
pbar.set_description('Processing at epoch %d'%epoch)
|
pbar.set_description('Processing at epoch %d'%epoch)
|
||||||
mel, mag = data
|
mel, mag = data
|
||||||
|
@ -109,27 +78,30 @@ def main():
|
||||||
loss = layers.mean(layers.abs(layers.elementwise_sub(mag_pred, mag)))
|
loss = layers.mean(layers.abs(layers.elementwise_sub(mag_pred, mag)))
|
||||||
if cfg.use_data_parallel:
|
if cfg.use_data_parallel:
|
||||||
loss = model.scale_loss(loss)
|
loss = model.scale_loss(loss)
|
||||||
|
loss.backward()
|
||||||
writer.add_scalars('training_loss',{
|
|
||||||
'loss':loss.numpy(),
|
|
||||||
}, global_step)
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
if cfg.use_data_parallel:
|
|
||||||
model.apply_collective_grads()
|
model.apply_collective_grads()
|
||||||
|
else:
|
||||||
|
loss.backward()
|
||||||
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
||||||
model.clear_gradients()
|
model.clear_gradients()
|
||||||
|
|
||||||
if global_step % cfg.save_step == 0:
|
|
||||||
if not os.path.exists(cfg.save_path):
|
|
||||||
os.mkdir(cfg.save_path)
|
|
||||||
save_path = os.path.join(cfg.save_path,'postnet/%d' % global_step)
|
|
||||||
dg.save_dygraph(model.state_dict(), save_path)
|
|
||||||
dg.save_dygraph(optimizer.state_dict(), save_path)
|
|
||||||
|
|
||||||
|
|
||||||
|
if local_rank==0:
|
||||||
|
writer.add_scalars('training_loss',{
|
||||||
|
'loss':loss.numpy(),
|
||||||
|
}, global_step)
|
||||||
|
|
||||||
|
if global_step % cfg.save_step == 0:
|
||||||
|
if not os.path.exists(cfg.save_path):
|
||||||
|
os.mkdir(cfg.save_path)
|
||||||
|
save_path = os.path.join(cfg.save_path,'postnet/%d' % global_step)
|
||||||
|
dg.save_dygraph(model.state_dict(), save_path)
|
||||||
|
dg.save_dygraph(optimizer.state_dict(), save_path)
|
||||||
|
|
||||||
|
if local_rank==0:
|
||||||
|
writer.close()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
parser = jsonargparse.ArgumentParser(description="Train postnet model", formatter_class='default_argparse')
|
||||||
|
add_config_options_to_parser(parser)
|
||||||
|
cfg = parser.parse_args('-c ./config/train_postnet.yaml'.split())
|
||||||
|
main(cfg)
|
|
@ -1,16 +1,15 @@
|
||||||
from preprocess import batch_examples, LJSpeech
|
|
||||||
import os
|
import os
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import paddle.fluid.dygraph as dg
|
import paddle.fluid.dygraph as dg
|
||||||
import paddle.fluid.layers as layers
|
import paddle.fluid.layers as layers
|
||||||
from network import *
|
from network import *
|
||||||
from tensorboardX import SummaryWriter
|
from tensorboardX import SummaryWriter
|
||||||
from parakeet.data.datacargo import DataCargo
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import jsonargparse
|
import jsonargparse
|
||||||
from parse import add_config_options_to_parser
|
from parse import add_config_options_to_parser
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
from matplotlib import cm
|
from matplotlib import cm
|
||||||
|
from data import LJSpeechLoader
|
||||||
|
|
||||||
class MyDataParallel(dg.parallel.DataParallel):
|
class MyDataParallel(dg.parallel.DataParallel):
|
||||||
"""
|
"""
|
||||||
|
@ -30,21 +29,14 @@ class MyDataParallel(dg.parallel.DataParallel):
|
||||||
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main(cfg):
|
||||||
parser = jsonargparse.ArgumentParser(description="Train TransformerTTS model", formatter_class='default_argparse')
|
local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0
|
||||||
add_config_options_to_parser(parser)
|
nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1
|
||||||
cfg = parser.parse_args('-c ./config/train_transformer.yaml'.split())
|
|
||||||
|
|
||||||
local_rank = dg.parallel.Env().local_rank
|
|
||||||
|
|
||||||
if local_rank == 0:
|
if local_rank == 0:
|
||||||
# Print the whole config setting.
|
# Print the whole config setting.
|
||||||
pprint(jsonargparse.namespace_to_dict(cfg))
|
pprint(jsonargparse.namespace_to_dict(cfg))
|
||||||
|
|
||||||
|
|
||||||
LJSPEECH_ROOT = Path(cfg.data_path)
|
|
||||||
dataset = LJSpeech(LJSPEECH_ROOT)
|
|
||||||
dataloader = DataCargo(dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=batch_examples, drop_last=True)
|
|
||||||
global_step = 0
|
global_step = 0
|
||||||
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||||||
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
||||||
|
@ -57,39 +49,13 @@ def main():
|
||||||
writer = SummaryWriter(path) if local_rank == 0 else None
|
writer = SummaryWriter(path) if local_rank == 0 else None
|
||||||
|
|
||||||
with dg.guard(place):
|
with dg.guard(place):
|
||||||
if cfg.use_data_parallel:
|
|
||||||
strategy = dg.parallel.prepare_context()
|
|
||||||
|
|
||||||
# dataloader
|
|
||||||
input_fields = {
|
|
||||||
'names': ['character', 'mel', 'mel_input', 'pos_text', 'pos_mel', 'text_len'],
|
|
||||||
'shapes':
|
|
||||||
[[cfg.batch_size, None], [cfg.batch_size, None, 80], [cfg.batch_size, None, 80], [cfg.batch_size, 1], [cfg.batch_size, 1], [cfg.batch_size, 1]],
|
|
||||||
'dtypes': ['float32', 'float32', 'float32', 'int64', 'int64', 'int64'],
|
|
||||||
'lod_levels': [0, 0, 0, 0, 0, 0]
|
|
||||||
}
|
|
||||||
|
|
||||||
inputs = [
|
|
||||||
fluid.data(
|
|
||||||
name=input_fields['names'][i],
|
|
||||||
shape=input_fields['shapes'][i],
|
|
||||||
dtype=input_fields['dtypes'][i],
|
|
||||||
lod_level=input_fields['lod_levels'][i])
|
|
||||||
for i in range(len(input_fields['names']))
|
|
||||||
]
|
|
||||||
|
|
||||||
reader = fluid.io.DataLoader.from_generator(
|
|
||||||
feed_list=inputs,
|
|
||||||
capacity=32,
|
|
||||||
iterable=True,
|
|
||||||
use_double_buffer=True,
|
|
||||||
return_list=True)
|
|
||||||
|
|
||||||
model = Model('transtts', cfg)
|
model = Model('transtts', cfg)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(4000 *( cfg.lr ** 2)), 4000))
|
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(4000 *( cfg.lr ** 2)), 4000))
|
||||||
|
|
||||||
|
reader = LJSpeechLoader(cfg, nranks, local_rank).reader()
|
||||||
|
|
||||||
if cfg.checkpoint_path is not None:
|
if cfg.checkpoint_path is not None:
|
||||||
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path)
|
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path)
|
||||||
model.set_dict(model_dict)
|
model.set_dict(model_dict)
|
||||||
|
@ -97,11 +63,11 @@ def main():
|
||||||
print("load checkpoint!!!")
|
print("load checkpoint!!!")
|
||||||
|
|
||||||
if cfg.use_data_parallel:
|
if cfg.use_data_parallel:
|
||||||
|
strategy = dg.parallel.prepare_context()
|
||||||
model = MyDataParallel(model, strategy)
|
model = MyDataParallel(model, strategy)
|
||||||
|
|
||||||
for epoch in range(cfg.epochs):
|
for epoch in range(cfg.epochs):
|
||||||
reader.set_batch_generator(dataloader, place)
|
pbar = tqdm(reader)
|
||||||
pbar = tqdm(reader())
|
|
||||||
for i, data in enumerate(pbar):
|
for i, data in enumerate(pbar):
|
||||||
pbar.set_description('Processing at epoch %d'%epoch)
|
pbar.set_description('Processing at epoch %d'%epoch)
|
||||||
character, mel, mel_input, pos_text, pos_mel, text_length = data
|
character, mel, mel_input, pos_text, pos_mel, text_length = data
|
||||||
|
@ -114,40 +80,41 @@ def main():
|
||||||
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
|
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
|
||||||
loss = mel_loss + post_mel_loss
|
loss = mel_loss + post_mel_loss
|
||||||
|
|
||||||
|
if local_rank==0:
|
||||||
|
writer.add_scalars('training_loss', {
|
||||||
|
'mel_loss':mel_loss.numpy(),
|
||||||
|
'post_mel_loss':post_mel_loss.numpy(),
|
||||||
|
}, global_step)
|
||||||
|
|
||||||
|
writer.add_scalars('alphas', {
|
||||||
|
'encoder_alpha':model.encoder.alpha.numpy(),
|
||||||
|
'decoder_alpha':model.decoder.alpha.numpy(),
|
||||||
|
}, global_step)
|
||||||
|
|
||||||
|
writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)
|
||||||
|
|
||||||
|
if global_step % cfg.image_step == 1:
|
||||||
|
for i, prob in enumerate(attn_probs):
|
||||||
|
for j in range(4):
|
||||||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||||
|
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||||
|
|
||||||
|
for i, prob in enumerate(attn_enc):
|
||||||
|
for j in range(4):
|
||||||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||||
|
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||||
|
|
||||||
|
for i, prob in enumerate(attn_dec):
|
||||||
|
for j in range(4):
|
||||||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||||
|
writer.add_image('Attention_dec_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||||
|
|
||||||
if cfg.use_data_parallel:
|
if cfg.use_data_parallel:
|
||||||
loss = model.scale_loss(loss)
|
loss = model.scale_loss(loss)
|
||||||
|
loss.backward()
|
||||||
writer.add_scalars('training_loss', {
|
|
||||||
'mel_loss':mel_loss.numpy(),
|
|
||||||
'post_mel_loss':post_mel_loss.numpy(),
|
|
||||||
}, global_step)
|
|
||||||
|
|
||||||
writer.add_scalars('alphas', {
|
|
||||||
'encoder_alpha':model.encoder.alpha.numpy(),
|
|
||||||
'decoder_alpha':model.decoder.alpha.numpy(),
|
|
||||||
}, global_step)
|
|
||||||
|
|
||||||
writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)
|
|
||||||
|
|
||||||
if global_step % cfg.image_step == 1:
|
|
||||||
for i, prob in enumerate(attn_probs):
|
|
||||||
for j in range(4):
|
|
||||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
|
||||||
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
|
||||||
|
|
||||||
for i, prob in enumerate(attn_enc):
|
|
||||||
for j in range(4):
|
|
||||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
|
||||||
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
|
||||||
|
|
||||||
for i, prob in enumerate(attn_dec):
|
|
||||||
for j in range(4):
|
|
||||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
|
||||||
writer.add_image('Attention_dec_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
if cfg.use_data_parallel:
|
|
||||||
model.apply_collective_grads()
|
model.apply_collective_grads()
|
||||||
|
else:
|
||||||
|
loss.backward()
|
||||||
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
||||||
model.clear_gradients()
|
model.clear_gradients()
|
||||||
|
|
||||||
|
@ -163,4 +130,7 @@ def main():
|
||||||
|
|
||||||
|
|
||||||
if __name__ =='__main__':
|
if __name__ =='__main__':
|
||||||
main()
|
parser = jsonargparse.ArgumentParser(description="Train TransformerTTS model", formatter_class='default_argparse')
|
||||||
|
add_config_options_to_parser(parser)
|
||||||
|
cfg = parser.parse_args('-c ./config/train_transformer.yaml'.split())
|
||||||
|
main(cfg)
|
Loading…
Reference in New Issue