add last bn for the decoder postnet, switch back to weighted mean
This commit is contained in:
parent
c57e8e7350
commit
a4a0bd8c98
|
@ -317,6 +317,7 @@ class CNNPostNet(nn.Layer):
|
|||
Conv1dBatchNorm(c_in, c_out, kernel_size,
|
||||
weight_attr=I.XavierUniform(),
|
||||
padding=padding))
|
||||
self.last_bn = nn.BatchNorm1D(d_output)
|
||||
# for a layer that ends with a normalization layer that is targeted to
|
||||
# output a non zero-central output, it may take a long time to
|
||||
# train the scale and bias
|
||||
|
@ -328,7 +329,7 @@ class CNNPostNet(nn.Layer):
|
|||
x = layer(x)
|
||||
if i != (len(self.convs) - 1):
|
||||
x = F.tanh(x)
|
||||
x = x_in + x
|
||||
x = self.last_bn(x_in + x)
|
||||
return x
|
||||
|
||||
|
||||
|
|
|
@ -15,7 +15,8 @@ def weighted_mean(input, weight):
|
|||
Tensor: shape(1,), weighted mean tensor with the same dtype as input.
|
||||
"""
|
||||
weight = paddle.cast(weight, input.dtype)
|
||||
return paddle.mean(input * weight)
|
||||
broadcast_factor = input.numel() / weight.numel()
|
||||
return paddle.sum(input * weight) / (paddle.sum(weight) * broadcast_factor)
|
||||
|
||||
def masked_l1_loss(prediction, target, mask):
|
||||
abs_error = F.l1_loss(prediction, target, reduction='none')
|
||||
|
|
|
@ -0,0 +1,137 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import distributed as dist
|
||||
from parakeet.utils import mp_tools
|
||||
|
||||
|
||||
def _load_latest_checkpoint(checkpoint_dir):
|
||||
"""Get the iteration number corresponding to the latest saved checkpoint
|
||||
|
||||
Args:
|
||||
checkpoint_dir (str): the directory where checkpoint is saved.
|
||||
|
||||
Returns:
|
||||
int: the latest iteration number.
|
||||
"""
|
||||
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Create checkpoint index file if not exist.
|
||||
if (not os.path.isfile(checkpoint_record)):
|
||||
return 0
|
||||
|
||||
# Fetch the latest checkpoint index.
|
||||
with open(checkpoint_record, "r") as handle:
|
||||
latest_checkpoint = handle.readline().split()[-1]
|
||||
iteration = int(latest_checkpoint.split("-")[-1])
|
||||
|
||||
return iteration
|
||||
|
||||
def _save_checkpoint(checkpoint_dir, iteration):
|
||||
"""Save the iteration number of the latest model to be checkpointed.
|
||||
|
||||
Args:
|
||||
checkpoint_dir (str): the directory where checkpoint is saved.
|
||||
iteration (int): the latest iteration number.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Update the latest checkpoint index.
|
||||
with open(checkpoint_record, "w") as handle:
|
||||
handle.write("model_checkpoint_path: step-{}".format(iteration))
|
||||
|
||||
def load_parameters(model,
|
||||
optimizer=None,
|
||||
checkpoint_dir=None,
|
||||
checkpoint_path=None):
|
||||
"""Load a specific model checkpoint from disk.
|
||||
|
||||
Args:
|
||||
model (obj): model to load parameters.
|
||||
optimizer (obj, optional): optimizer to load states if needed.
|
||||
Defaults to None.
|
||||
checkpoint_dir (str, optional): the directory where checkpoint is saved.
|
||||
checkpoint_path (str, optional): if specified, load the checkpoint
|
||||
stored in the checkpoint_path and the argument 'checkpoint_dir' will
|
||||
be ignored. Defaults to None.
|
||||
|
||||
Returns:
|
||||
iteration (int): number of iterations that the loaded checkpoint has
|
||||
been trained.
|
||||
"""
|
||||
if checkpoint_path is not None:
|
||||
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
||||
elif checkpoint_dir is not None:
|
||||
iteration = _load_latest_checkpoint(checkpoint_dir)
|
||||
if iteration == 0:
|
||||
return iteration
|
||||
checkpoint_path = os.path.join(checkpoint_dir,
|
||||
"step-{}".format(iteration))
|
||||
else:
|
||||
raise ValueError(
|
||||
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
|
||||
)
|
||||
|
||||
local_rank = dist.get_rank()
|
||||
|
||||
params_path = checkpoint_path + ".pdparams"
|
||||
model_dict = paddle.load(params_path)
|
||||
model.set_state_dict(model_dict)
|
||||
print("[checkpoint] Rank {}: loaded model from {}".format(
|
||||
local_rank, params_path))
|
||||
|
||||
optimizer_path = checkpoint_path + ".pdopt"
|
||||
if optimizer and os.path.isfile(optimizer_path):
|
||||
optimizer_dict = paddle.load(optimizer_path)
|
||||
optimizer.set_state_dict(optimizer_dict)
|
||||
print("[checkpoint] Rank {}: loaded optimizer state from {}".
|
||||
format(local_rank, optimizer_path))
|
||||
|
||||
return iteration
|
||||
|
||||
@mp_tools.rank_zero_only
|
||||
def save_parameters(checkpoint_dir, iteration, model, optimizer=None):
|
||||
"""Checkpoint the latest trained model parameters.
|
||||
|
||||
Args:
|
||||
checkpoint_dir (str): the directory where checkpoint is saved.
|
||||
iteration (int): the latest iteration number.
|
||||
model (obj): model to be checkpointed.
|
||||
optimizer (obj, optional): optimizer to be checkpointed.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
checkpoint_path = os.path.join(checkpoint_dir, "step-{}".format(iteration))
|
||||
|
||||
model_dict = model.state_dict()
|
||||
params_path = checkpoint_path + ".pdparams"
|
||||
paddle.save(model_dict, params_path)
|
||||
print("[checkpoint] Saved model to {}".format(params_path))
|
||||
|
||||
if optimizer:
|
||||
opt_dict = optimizer.state_dict()
|
||||
optimizer_path = checkpoint_path + ".pdopt"
|
||||
paddle.save(opt_dict, optimizer_path)
|
||||
print("[checkpoint] Saved optimzier state to {}".format(
|
||||
optimizer_path))
|
||||
|
||||
_save_checkpoint(checkpoint_dir, iteration)
|
Loading…
Reference in New Issue