Merge pull request #69 from lfchener/develop
fix the behavior of dropout in eval of tacotron2
This commit is contained in:
commit
c1de6a1e49
|
@ -71,8 +71,10 @@ class DecoderPreNet(nn.Layer):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
x = F.dropout(F.relu(self.linear1(x)), self.dropout_rate)
|
x = F.dropout(
|
||||||
output = F.dropout(F.relu(self.linear2(x)), self.dropout_rate)
|
F.relu(self.linear1(x)), self.dropout_rate, training=True)
|
||||||
|
output = F.dropout(
|
||||||
|
F.relu(self.linear2(x)), self.dropout_rate, training=True)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@ -161,9 +163,13 @@ class DecoderPostNet(nn.Layer):
|
||||||
|
|
||||||
for i in range(len(self.conv_batchnorms) - 1):
|
for i in range(len(self.conv_batchnorms) - 1):
|
||||||
input = F.dropout(
|
input = F.dropout(
|
||||||
F.tanh(self.conv_batchnorms[i](input), self.dropout))
|
F.tanh(self.conv_batchnorms[i](input)),
|
||||||
output = F.dropout(self.conv_batchnorms[self.num_layers - 1](input),
|
self.dropout,
|
||||||
self.dropout)
|
training=self.training)
|
||||||
|
output = F.dropout(
|
||||||
|
self.conv_batchnorms[self.num_layers - 1](input),
|
||||||
|
self.dropout,
|
||||||
|
training=self.training)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@ -228,8 +234,10 @@ class Tacotron2Encoder(nn.Layer):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
for conv_batchnorm in self.conv_batchnorms:
|
for conv_batchnorm in self.conv_batchnorms:
|
||||||
x = F.dropout(F.relu(conv_batchnorm(x)),
|
x = F.dropout(
|
||||||
self.p_dropout) #(B, T, C)
|
F.relu(conv_batchnorm(x)),
|
||||||
|
self.p_dropout,
|
||||||
|
training=self.training)
|
||||||
|
|
||||||
output, _ = self.lstm(inputs=x, sequence_length=input_lens)
|
output, _ = self.lstm(inputs=x, sequence_length=input_lens)
|
||||||
return output
|
return output
|
||||||
|
@ -350,8 +358,10 @@ class Tacotron2Decoder(nn.Layer):
|
||||||
# The first lstm layer
|
# The first lstm layer
|
||||||
_, (self.attention_hidden, self.attention_cell) = self.attention_rnn(
|
_, (self.attention_hidden, self.attention_cell) = self.attention_rnn(
|
||||||
cell_input, (self.attention_hidden, self.attention_cell))
|
cell_input, (self.attention_hidden, self.attention_cell))
|
||||||
self.attention_hidden = F.dropout(self.attention_hidden,
|
self.attention_hidden = F.dropout(
|
||||||
self.p_attention_dropout)
|
self.attention_hidden,
|
||||||
|
self.p_attention_dropout,
|
||||||
|
training=self.training)
|
||||||
|
|
||||||
# Loaction sensitive attention
|
# Loaction sensitive attention
|
||||||
attention_weights_cat = paddle.stack(
|
attention_weights_cat = paddle.stack(
|
||||||
|
@ -367,7 +377,9 @@ class Tacotron2Decoder(nn.Layer):
|
||||||
_, (self.decoder_hidden, self.decoder_cell) = self.decoder_rnn(
|
_, (self.decoder_hidden, self.decoder_cell) = self.decoder_rnn(
|
||||||
decoder_input, (self.decoder_hidden, self.decoder_cell))
|
decoder_input, (self.decoder_hidden, self.decoder_cell))
|
||||||
self.decoder_hidden = F.dropout(
|
self.decoder_hidden = F.dropout(
|
||||||
self.decoder_hidden, p=self.p_decoder_dropout)
|
self.decoder_hidden,
|
||||||
|
p=self.p_decoder_dropout,
|
||||||
|
training=self.training)
|
||||||
|
|
||||||
# decode output one step
|
# decode output one step
|
||||||
decoder_hidden_attention_context = paddle.concat(
|
decoder_hidden_attention_context = paddle.concat(
|
||||||
|
|
Loading…
Reference in New Issue