fix transformer_tts' stop condition

This commit is contained in:
chenfeiyu 2020-12-04 02:11:02 +08:00
parent e87bfb7d05
commit c57e8e7350
4 changed files with 35 additions and 206 deletions

View File

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from parakeet.models.clarinet import *
#from parakeet.models.clarinet import *
from parakeet.models.waveflow import *
from parakeet.models.wavenet import *
#from parakeet.models.wavenet import *
from parakeet.models.transformer_tts import *
from parakeet.models.deepvoice3 import *
#from parakeet.models.deepvoice3 import *
# from parakeet.models.fastspeech import *

View File

@ -491,7 +491,7 @@ class TransformerTTS(nn.Layer):
decoder_output = paddle.concat([decoder_output, mel_output[:, -self.r:, :]], 1)
# stop condition: (if any ouput frame of the output multiframes hits the stop condition)
if paddle.any(paddle.argmax(stop_logits[0, :, :], axis=-1) == self.stop_prob_index):
if paddle.any(paddle.argmax(stop_logits[0, -self.r:, :], axis=-1) == self.stop_prob_index):
if verbose:
print("Hits stop condition.")
break

View File

@ -1,3 +1,5 @@
import numba
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
@ -22,3 +24,32 @@ def masked_l1_loss(prediction, target, mask):
def masked_softmax_with_cross_entropy(logits, label, mask, axis=-1):
ce = F.softmax_with_cross_entropy(logits, label, axis=axis)
return weighted_mean(ce, mask)
def diagonal_loss(attentions, input_lengths, target_lengths, g=0.2, multihead=False):
"""A metric to evaluate how diagonal a attention distribution is."""
W = guided_attentions(input_lengths, target_lengths, g)
W_tensor = paddle.to_tensor(W)
if not multihead:
return paddle.mean(attentions * W_tensor)
else:
return paddle.mean(attentions * paddle.unsqueeze(W_tensor, 1))
@numba.jit(nopython=True)
def guided_attention(N, max_N, T, max_T, g):
W = np.zeros((max_T, max_N), dtype=np.float32)
for t in range(T):
for n in range(N):
W[t, n] = 1 - np.exp(-(n / N - t / T)**2 / (2 * g * g))
# (T_dec, T_enc)
return W
def guided_attentions(input_lengths, target_lengths, g=0.2):
B = len(input_lengths)
max_input_len = input_lengths.max()
max_target_len = target_lengths.max()
W = np.zeros((B, max_target_len, max_input_len), dtype=np.float32)
for b in range(B):
W[b] = guided_attention(input_lengths[b], max_input_len,
target_lengths[b], max_target_len, g)
# (B, T_dec, T_enc)
return W

View File

@ -1,202 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
class Linear(dg.Layer):
def __init__(self,
in_features,
out_features,
is_bias=True,
dtype="float32"):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dtype = dtype
self.weight = fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer())
self.bias = is_bias
if is_bias is not False:
k = math.sqrt(1.0 / in_features)
self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k))
self.linear = dg.Linear(
in_features,
out_features,
param_attr=self.weight,
bias_attr=self.bias, )
def forward(self, x):
x = self.linear(x)
return x
class ScaledDotProductAttention(dg.Layer):
def __init__(self, d_key):
"""Scaled dot product attention module.
Args:
d_key (int): the dim of key in multihead attention.
"""
super(ScaledDotProductAttention, self).__init__()
self.d_key = d_key
# please attention this mask is diff from pytorch
def forward(self,
key,
value,
query,
mask=None,
query_mask=None,
dropout=0.1):
"""
Compute scaled dot product attention.
Args:
key (Variable): shape(B, T, C), dtype float32, the input key of scaled dot product attention.
value (Variable): shape(B, T, C), dtype float32, the input value of scaled dot product attention.
query (Variable): shape(B, T, C), dtype float32, the input query of scaled dot product attention.
mask (Variable, optional): shape(B, T_q, T_k), dtype float32, the mask of key. Defaults to None.
query_mask (Variable, optional): shape(B, T_q, T_q), dtype float32, the mask of query. Defaults to None.
dropout (float32, optional): the probability of dropout. Defaults to 0.1.
Returns:
result (Variable): shape(B, T, C), the result of mutihead attention.
attention (Variable): shape(n_head * B, T, C), the attention of key.
"""
# Compute attention score
attention = layers.matmul(
query, key, transpose_y=True, alpha=self.d_key
**-0.5) #transpose the last dim in y
# Mask key to ignore padding
if mask is not None:
attention = attention + mask
attention = layers.softmax(attention, use_cudnn=True)
attention = layers.dropout(
attention, dropout, dropout_implementation='upscale_in_train')
# Mask query to ignore padding
if query_mask is not None:
attention = attention * query_mask
result = layers.matmul(attention, value)
return result, attention
class MultiheadAttention(dg.Layer):
def __init__(self,
num_hidden,
d_k,
d_q,
num_head=4,
is_bias=False,
dropout=0.1,
is_concat=True):
"""Multihead Attention.
Args:
num_hidden (int): the number of hidden layer in network.
d_k (int): the dim of key in multihead attention.
d_q (int): the dim of query in multihead attention.
num_head (int, optional): the head number of multihead attention. Defaults to 4.
is_bias (bool, optional): whether have bias in linear layers. Default to False.
dropout (float, optional): dropout probability of FFTBlock. Defaults to 0.1.
is_concat (bool, optional): whether concat query and result. Default to True.
"""
super(MultiheadAttention, self).__init__()
self.num_hidden = num_hidden
self.num_head = num_head
self.d_k = d_k
self.d_q = d_q
self.dropout = dropout
self.is_concat = is_concat
self.key = Linear(num_hidden, num_head * d_k, is_bias=is_bias)
self.value = Linear(num_hidden, num_head * d_k, is_bias=is_bias)
self.query = Linear(num_hidden, num_head * d_q, is_bias=is_bias)
self.scal_attn = ScaledDotProductAttention(d_k)
if self.is_concat:
self.fc = Linear(num_head * d_q * 2, num_hidden)
else:
self.fc = Linear(num_head * d_q, num_hidden)
self.layer_norm = dg.LayerNorm(num_hidden)
def forward(self, key, value, query_input, mask=None, query_mask=None):
"""
Compute attention.
Args:
key (Variable): shape(B, T, C), dtype float32, the input key of attention.
value (Variable): shape(B, T, C), dtype float32, the input value of attention.
query_input (Variable): shape(B, T, C), dtype float32, the input query of attention.
mask (Variable, optional): shape(B, T_query, T_key), dtype float32, the mask of key. Defaults to None.
query_mask (Variable, optional): shape(B, T_query, T_key), dtype float32, the mask of query. Defaults to None.
Returns:
result (Variable): shape(B, T, C), the result of mutihead attention.
attention (Variable): shape(num_head * B, T, C), the attention of key and query.
"""
batch_size = key.shape[0]
seq_len_key = key.shape[1]
seq_len_query = query_input.shape[1]
# Make multihead attention
key = layers.reshape(
self.key(key), [batch_size, seq_len_key, self.num_head, self.d_k])
value = layers.reshape(
self.value(value),
[batch_size, seq_len_key, self.num_head, self.d_k])
query = layers.reshape(
self.query(query_input),
[batch_size, seq_len_query, self.num_head, self.d_q])
key = layers.reshape(
layers.transpose(key, [2, 0, 1, 3]), [-1, seq_len_key, self.d_k])
value = layers.reshape(
layers.transpose(value, [2, 0, 1, 3]),
[-1, seq_len_key, self.d_k])
query = layers.reshape(
layers.transpose(query, [2, 0, 1, 3]),
[-1, seq_len_query, self.d_q])
result, attention = self.scal_attn(
key, value, query, mask=mask, query_mask=query_mask)
# concat all multihead result
result = layers.reshape(
result, [self.num_head, batch_size, seq_len_query, self.d_q])
result = layers.reshape(
layers.transpose(result, [1, 2, 0, 3]),
[batch_size, seq_len_query, -1])
if self.is_concat:
result = layers.concat([query_input, result], axis=-1)
result = layers.dropout(
self.fc(result),
self.dropout,
dropout_implementation='upscale_in_train')
result = result + query_input
result = self.layer_norm(result)
return result, attention