Merge branch 'master' into 'master'

Adding WaveNet model verified on LJSpeech dataset

See merge request !3
This commit is contained in:
liuyibing01 2019-12-05 14:18:34 +08:00
commit fd9e198ab6
15 changed files with 1582 additions and 2 deletions

6
.gitignore vendored
View File

@ -130,3 +130,9 @@ dmypy.json
# Pyre type checker
.pyre/
# Shell, vim, and output folder
*.sh
*.swp
runs
syn_audios

View File

@ -32,6 +32,9 @@ class DataCargo(object):
def __iter__(self):
return DataIterator(self)
def __call__(self):
return DataIterator(self)
@property
def _auto_collation(self):
# we will auto batching

View File

@ -163,6 +163,35 @@ class WeightedRandomSampler(Sampler):
return self.num_samples
class DistributedSampler(Sampler):
def __init__(self, dataset_size, num_trainers, rank, shuffle=True):
self.dataset_size = dataset_size
self.num_trainers = num_trainers
self.rank = rank
self.num_samples = int(np.ceil(dataset_size / num_trainers))
self.total_size = self.num_samples * num_trainers
assert self.total_size >= self.dataset_size
self.shuffle = shuffle
def __iter__(self):
indices = list(range(self.dataset_size))
if self.shuffle:
random.shuffle(indices)
# Append extra samples to make it evenly distributed on all trainers.
indices += indices[:(self.total_size - self.dataset_size)]
assert len(indices) == self.total_size
# Subset samples for each trainer.
indices = indices[self.rank:self.total_size:self.num_trainers]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
class BatchSampler(Sampler):
r"""Wraps another sampler to yield a mini-batch of indices.
Args:

View File

@ -0,0 +1,97 @@
# WaveNet with Paddle Fluid
Paddle fluid implementation of WaveNet, a deep generative model of raw audio waveforms.
WaveNet model is originally proposed in [WaveNet: A Generative Model for Raw Audio](https://arxiv.org/abs/1609.03499).
Our implementation is based on the WaveNet architecture described in [ClariNet: Parallel Wave Generation in End-to-End Text-to-Speech](https://arxiv.org/abs/1807.07281) and can provide various output distributions, including single Gaussian, mixture of Gaussian, and softmax with linearly quantized channels.
We implement WaveNet model in paddle fluid with dynamic graph, which is convenient for flexible network architectures.
## Project Structure
```text
├── configs # yaml configuration files of preset model hyperparameters
├── data.py # dataset and dataloader settings for LJSpeech
├── slurm.py # optional slurm helper functions if you use slurm to train model
├── synthesis.py # script for speech synthesis
├── train.py # script for model training
├── utils.py # helper functions for e.g., model checkpointing
├── wavenet.py # WaveNet model high level APIs
└── wavenet_modules.py # WaveNet model implementation
```
## Usage
There are many hyperparameters to be tuned depending on the specification of model and dataset you are working on. Hyperparameters that are known to work good for the LJSpeech dataset are provided as yaml files in `./configs/` folder. Specifically, we provide `wavenet_ljspeech_single_gaussian.yaml`, `wavenet_ljspeech_mix_gaussian.yaml`, and `wavenet_ljspeech_softmax.yaml` config files for WaveNet with single Gaussian, 10-component mixture of Gaussians, and softmax (with 2048 linearly quantized channels) output distributions, respectively.
Note that `train.py` and `synthesis.py` all accept a `--config` parameter. To ensure consistency, you should use the same config yaml file for both training and synthesizing. You can also overwrite these preset hyperparameters with command line by updating parameters after `--config`. For example `--config=${yaml} --batch_size=8 --layers=20` can overwrite the corresponding hyperparameters in the `${yaml}` config file. For more details about these hyperparameters, check `utils.add_config_options_to_parser`.
Note that you also need to specify some additional parameters for `train.py` and `synthesis.py`, and the details can be found in `train.add_options_to_parser` and `synthesis.add_options_to_parser`, respectively.
### Dataset
Download and unzip [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).
```bash
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
tar xjvf LJSpeech-1.1.tar.bz2
```
In this example, assume that the path of unzipped LJSpeech dataset is `./data/LJSpeech-1.1`.
### Train on single GPU
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u train.py --config=${yaml} \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --batch_size=4 \
--parallel=false --use_gpu=true
```
#### Save and Load checkpoints
Our model will save model parameters as checkpoints in `./runs/wavenet/${ModelName}/checkpoint/` every 10000 iterations by default.
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
1. Use `--checkpoint=./runs/wavenet/${ModelName}/checkpoint/step-500000` to provide a specific path to load. Note that you only need to provide the base name of the parameter file, which is `step-500000`, no extension name `.pdparams` or `.pdopt` is needed.
2. Use `--iteration=500000`.
3. If you don't specify either `--checkpoint` or `--iteration`, the model will automatically load the latest checkpoint in `./runs/wavenet/${ModelName}/checkpoint`.
### Train on multiple GPUs
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -u -m paddle.distributed.launch train.py \
--config=${yaml} \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --parallel=true --use_gpu=true
```
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
### Monitor with Tensorboard
By default, the logs are saved in `./runs/wavenet/${ModelName}/logs/`. You can monitor logs by tensorboard.
```bash
tensorboard --logdir=${log_dir} --port=8888
```
### Synthesize from a checkpoint
Check the [Save and load checkpoint](#save-and-load-checkpoints) section on how to load a specific checkpoint.
The following example will automatically load the latest checkpoint:
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u synthesis.py --config=${yaml} \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --use_gpu=true \
--output=./syn_audios \
--sample=${SAMPLE}
```
In this example, `--output` specifies where to save the synthesized audios and `--sample` specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset.

View File

@ -0,0 +1,32 @@
valid_size: 16
train_clip_second: 0.5
sample_rate: 22050
fft_window_shift: 256
fft_window_size: 1024
fft_size: 2048
mel_bands: 80
seed: 1
batch_size: 8
test_every: 2000
save_every: 10000
max_iterations: 2000000
layers: 30
kernel_width: 2
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
residual_channels: 128
skip_channels: 128
loss_type: mix-gaussian-pdf
num_mixtures: 10
log_scale_min: -9.0
conditioner:
filter_sizes: [[32, 3], [32, 3]]
upsample_factors: [16, 16]
learning_rate: 0.001
gradient_max_norm: 100.0
anneal:
every: 200000
rate: 0.5

View File

@ -0,0 +1,32 @@
valid_size: 16
train_clip_second: 0.5
sample_rate: 22050
fft_window_shift: 256
fft_window_size: 1024
fft_size: 2048
mel_bands: 80
seed: 1
batch_size: 8
test_every: 2000
save_every: 10000
max_iterations: 2000000
layers: 30
kernel_width: 2
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
residual_channels: 128
skip_channels: 128
loss_type: mix-gaussian-pdf
num_mixtures: 1
log_scale_min: -9.0
conditioner:
filter_sizes: [[32, 3], [32, 3]]
upsample_factors: [16, 16]
learning_rate: 0.001
gradient_max_norm: 100.0
anneal:
every: 200000
rate: 0.5

View File

@ -0,0 +1,31 @@
valid_size: 16
train_clip_second: 0.5
sample_rate: 22050
fft_window_shift: 256
fft_window_size: 1024
fft_size: 2048
mel_bands: 80
seed: 1
batch_size: 8
test_every: 2000
save_every: 10000
max_iterations: 2000000
layers: 30
kernel_width: 2
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
residual_channels: 128
skip_channels: 128
loss_type: softmax
num_channels: 2048
conditioner:
filter_sizes: [[32, 3], [32, 3]]
upsample_factors: [16, 16]
learning_rate: 0.001
gradient_max_norm: 100.0
anneal:
every: 200000
rate: 0.5

View File

@ -0,0 +1,160 @@
import random
import librosa
import numpy as np
from paddle import fluid
import utils
from parakeet.datasets import ljspeech
from parakeet.data import dataset
from parakeet.data.sampler import DistributedSampler, BatchSampler
from parakeet.data.datacargo import DataCargo
class Dataset(ljspeech.LJSpeech):
def __init__(self, config):
super(Dataset, self).__init__(config.root)
self.config = config
self.fft_window_shift = config.fft_window_shift
# Calculate context frames.
frames_per_second = config.sample_rate // self.fft_window_shift
train_clip_frames = int(np.ceil(
config.train_clip_second * frames_per_second))
context_frames = config.context_size // self.fft_window_shift
self.num_frames = train_clip_frames + context_frames
def _get_example(self, metadatum):
fname, _, _ = metadatum
wav_path = self.root.joinpath("wavs", fname + ".wav")
config = self.config
sr = config.sample_rate
fft_window_shift = config.fft_window_shift
fft_window_size = config.fft_window_size
fft_size = config.fft_size
audio, loaded_sr = librosa.load(wav_path, sr=None)
assert loaded_sr == sr
# Pad audio to the right size.
frames = int(np.ceil(float(audio.size) / fft_window_shift))
fft_padding = (fft_size - fft_window_shift) // 2
desired_length = frames * fft_window_shift + fft_padding * 2
pad_amount = (desired_length - audio.size) // 2
if audio.size % 2 == 0:
audio = np.pad(audio, (pad_amount, pad_amount), mode='reflect')
else:
audio = np.pad(audio, (pad_amount, pad_amount + 1), mode='reflect')
# Normalize audio.
audio = audio / np.abs(audio).max() * 0.999
# Compute mel-spectrogram.
# Turn center to False to prevent internal padding.
spectrogram = librosa.core.stft(
audio, hop_length=fft_window_shift,
win_length=fft_window_size, n_fft=fft_size, center=False)
spectrogram_magnitude = np.abs(spectrogram)
# Compute mel-spectrograms.
mel_filter_bank = librosa.filters.mel(sr=sr, n_fft=fft_size,
n_mels=config.mel_bands)
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
mel_spectrogram = mel_spectrogram.T
# Rescale mel_spectrogram.
min_level, ref_level = 1e-5, 20
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
mel_spectrogram = mel_spectrogram - ref_level
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
# Extract the center of audio that corresponds to mel spectrograms.
audio = audio[fft_padding : -fft_padding]
assert mel_spectrogram.shape[0] * fft_window_shift == audio.size
return audio, mel_spectrogram
class Subset(dataset.Dataset):
def __init__(self, dataset, indices, valid):
self.dataset = dataset
self.indices = indices
self.valid = valid
def __getitem__(self, idx):
fft_window_shift = self.dataset.fft_window_shift
num_frames = self.dataset.num_frames
audio, mel = self.dataset[self.indices[idx]]
if self.valid:
audio_start = 0
else:
# Randomly crop context + train_clip_second of audio.
audio_frames = int(audio.size) // fft_window_shift
max_start_frame = audio_frames - num_frames
assert max_start_frame >= 0, "audio {} is too short".format(idx)
frame_start = random.randint(0, max_start_frame)
frame_end = frame_start + num_frames
audio_start = frame_start * fft_window_shift
audio_end = frame_end * fft_window_shift
audio = audio[audio_start : audio_end]
return audio, mel, audio_start
def _batch_examples(self, batch):
audios = [sample[0] for sample in batch]
audio_starts = [sample[2] for sample in batch]
# mels shape [num_frames, mel_bands]
max_frames = max(sample[1].shape[0] for sample in batch)
mels = [utils.pad_to_size(sample[1], max_frames) for sample in batch]
audios = np.array(audios, dtype=np.float32)
mels = np.array(mels, dtype=np.float32)
audio_starts = np.array(audio_starts, dtype=np.int32)
return audios, mels, audio_starts
def __len__(self):
return len(self.indices)
class LJSpeech:
def __init__(self, config, nranks, rank):
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
# Whole LJSpeech dataset.
ds = Dataset(config)
# Split into train and valid dataset.
indices = list(range(len(ds)))
train_indices = indices[config.valid_size:]
valid_indices = indices[:config.valid_size]
random.shuffle(train_indices)
# Train dataset.
trainset = Subset(ds, train_indices, valid=False)
sampler = DistributedSampler(len(trainset), nranks, rank)
total_bs = config.batch_size
assert total_bs % nranks == 0
train_sampler = BatchSampler(sampler, total_bs // nranks,
drop_last=True)
trainloader = DataCargo(trainset, batch_sampler=train_sampler)
trainreader = fluid.io.PyReader(capacity=50, return_list=True)
trainreader.decorate_batch_generator(trainloader, place)
self.trainloader = (data for _ in iter(int, 1)
for data in trainreader())
# Valid dataset.
validset = Subset(ds, valid_indices, valid=True)
# Currently only support batch_size = 1 for valid loader.
validloader = DataCargo(validset, batch_size=1, shuffle=False)
validreader = fluid.io.PyReader(capacity=20, return_list=True)
validreader.decorate_batch_generator(validloader, place)
self.validloader = validreader

View File

@ -0,0 +1,112 @@
"""
Utility module for restarting training when using SLURM.
"""
import subprocess
import os
import sys
import shlex
import re
import time
def job_info():
"""Get information about the current job using `scontrol show job`.
Returns a dict mapping parameter names (e.g. "UserId", "RunTime", etc) to
their values, both as strings.
"""
job_id = int(os.environ["SLURM_JOB_ID"])
command = ["scontrol", "show", "job", str(job_id)]
output = subprocess.check_output(command).decode("utf-8")
# Use a regex to extract the parameter names and values
pattern = "([A-Za-z/]*)=([^ \t\n]*)"
return dict(re.findall(pattern, output))
def parse_hours(text):
"""Parse a time format HH or DD-HH into a number of hours."""
hour_chunks = text.split("-")
if len(hour_chunks) == 1:
return int(hour_chunks[0])
elif len(hour_chunks) == 2:
return 24 * int(hour_chunks[0]) + int(hour_chunks[1])
else:
raise ValueError("Unexpected hour format (expected HH or "
"DD-HH, but got {}).".format(text))
def parse_time(text):
"""Convert slurm time to an integer.
Expects time to be of the form:
"hours:minutes:seconds" or "day-hours:minutes:seconds".
"""
hours, minutes, seconds = text.split(":")
try:
return parse_hours(hours) * 3600 + int(minutes) * 60 + int(seconds)
except ValueError as e:
raise ValueError("Error parsing time {}. Got error {}.".format(
text, str(e)))
def restart_command():
"""Using the environment and SLURM command, create a command that, when,
run, will enqueue a repeat of the current job using `sbatch`.
Return the command as a list of strings, suitable for passing to
`subprocess.check_call` or similar functions.
Returns:
resume_command: list<str>, command to run to restart job.
end_time: int or None; the time the job will end or None
if the job has unlimited runtime.
"""
# Make sure `RunTime` could be parsed correctly.
while job_info()["RunTime"] == "INVALID":
time.sleep(1)
# Get all the necessary information by querying SLURM with this job id
info = job_info()
try:
num_cpus = int(info["CPUs/Task"])
except KeyError:
num_cpus = int(os.environ["SLURM_CPUS_PER_TASK"])
num_tasks = int(os.environ["SLURM_NTASKS"])
nodes = info["NumNodes"]
gres, partition = info.get("Gres"), info.get("Partition")
stderr, stdout = info.get("StdErr"), info.get("StdOut")
job_name = info.get("JobName")
command = ["sbatch", "--job-name={}".format(job_name),
"--ntasks={}".format(num_tasks)]
if partition:
command.extend(["--partition", partition])
if gres and gres != "(null)":
command.extend(["--gres", gres])
num_gpu = int(gres.split(':')[-1])
print("number of gpu assigned by slurm is {}".format(num_gpu))
if stderr:
command.extend(["--error", stderr])
if stdout:
command.extend(["--output", stdout])
python = subprocess.check_output(
["/usr/bin/which", "python3"]).decode("utf-8").strip()
dist_setting = ['-m', 'paddle.distributed.launch']
wrap_cmd = ["srun", python, '-u'] + dist_setting + sys.argv
command.append(
"--wrap={}".format(" ".join(shlex.quote(arg) for arg in wrap_cmd)))
time_limit_string = info["TimeLimit"]
if time_limit_string.lower() == "unlimited":
print("UNLIMITED detected: restart OFF, infinite learning ON.",
flush=True)
return command, None
time_limit = parse_time(time_limit_string)
runtime = parse_time(info["RunTime"])
end_time = time.time() + time_limit - runtime
return command, end_time

View File

@ -0,0 +1,85 @@
import os
import random
from pprint import pprint
import jsonargparse
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
import utils
from wavenet import WaveNet
def add_options_to_parser(parser):
parser.add_argument('--model', type=str, default='wavenet',
help="general name of the model")
parser.add_argument('--name', type=str,
help="specific name of the training model")
parser.add_argument('--root', type=str,
help="root path of the LJSpeech dataset")
parser.add_argument('--use_gpu', type=bool, default=True,
help="option to use gpu training")
parser.add_argument('--iteration', type=int, default=None,
help=("which iteration of checkpoint to load, "
"default to load the latest checkpoint"))
parser.add_argument('--checkpoint', type=str, default=None,
help="path of the checkpoint to load")
parser.add_argument('--output', type=str, default="./syn_audios",
help="path to write synthesized audio files")
parser.add_argument('--sample', type=int,
help="which of the valid samples to synthesize audio")
def synthesize(config):
pprint(jsonargparse.namespace_to_dict(config))
# Get checkpoint directory path.
run_dir = os.path.join("runs", config.model, config.name)
checkpoint_dir = os.path.join(run_dir, "checkpoint")
# Configurate device.
place = fluid.CUDAPlace(0) if config.use_gpu else fluid.CPUPlace()
with dg.guard(place):
# Fix random seed.
seed = config.seed
random.seed(seed)
np.random.seed(seed)
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
print("Random Seed: ", seed)
# Build model.
model = WaveNet(config, checkpoint_dir)
model.build(training=False)
# Obtain the current iteration.
if config.checkpoint is None:
if config.iteration is None:
iteration = utils.load_latest_checkpoint(checkpoint_dir)
else:
iteration = config.iteration
else:
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
# Run model inference.
model.infer(iteration)
if __name__ == "__main__":
# Create parser.
parser = jsonargparse.ArgumentParser(
description="Synthesize audio using WaveNet model",
formatter_class='default_argparse')
add_options_to_parser(parser)
utils.add_config_options_to_parser(parser)
# Parse argument from both command line and yaml config file.
# For conflicting updates to the same field,
# the preceding update will be overwritten by the following one.
config = parser.parse_args()
synthesize(config)

View File

@ -0,0 +1,139 @@
import os
import random
import subprocess
import time
from pprint import pprint
import jsonargparse
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
from tensorboardX import SummaryWriter
import slurm
import utils
from wavenet import WaveNet
MAXIMUM_SAVE_TIME = 10 * 60
def add_options_to_parser(parser):
parser.add_argument('--model', type=str, default='wavenet',
help="general name of the model")
parser.add_argument('--name', type=str,
help="specific name of the training model")
parser.add_argument('--root', type=str,
help="root path of the LJSpeech dataset")
parser.add_argument('--parallel', type=bool, default=True,
help="option to use data parallel training")
parser.add_argument('--use_gpu', type=bool, default=True,
help="option to use gpu training")
parser.add_argument('--iteration', type=int, default=None,
help=("which iteration of checkpoint to load, "
"default to load the latest checkpoint"))
parser.add_argument('--checkpoint', type=str, default=None,
help="path of the checkpoint to load")
parser.add_argument('--slurm', type=bool, default=False,
help="whether you are using slurm to submit training jobs")
def train(config):
use_gpu = config.use_gpu
parallel = config.parallel if use_gpu else False
# Get the rank of the current training process.
rank = dg.parallel.Env().local_rank if parallel else 0
nranks = dg.parallel.Env().nranks if parallel else 1
if rank == 0:
# Print the whole config setting.
pprint(jsonargparse.namespace_to_dict(config))
# Make checkpoint directory.
run_dir = os.path.join("runs", config.model, config.name)
checkpoint_dir = os.path.join(run_dir, "checkpoint")
os.makedirs(checkpoint_dir, exist_ok=True)
# Create tensorboard logger.
tb = SummaryWriter(os.path.join(run_dir, "logs")) \
if rank == 0 else None
# Configurate device
place = fluid.CUDAPlace(rank) if use_gpu else fluid.CPUPlace()
with dg.guard(place):
# Fix random seed.
seed = config.seed
random.seed(seed)
np.random.seed(seed)
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
print("Random Seed: ", seed)
# Build model.
model = WaveNet(config, checkpoint_dir, parallel, rank, nranks, tb)
model.build()
# Obtain the current iteration.
if config.checkpoint is None:
if config.iteration is None:
iteration = utils.load_latest_checkpoint(checkpoint_dir, rank)
else:
iteration = config.iteration
else:
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
# Get restart command if using slurm.
if config.slurm:
resume_command, death_time = slurm.restart_command()
if rank == 0:
print("Restart command:", " ".join(resume_command))
done = False
while iteration < config.max_iterations:
# Run one single training step.
model.train_step(iteration)
iteration += 1
if iteration % config.test_every == 0:
# Run validation step.
model.valid_step(iteration)
# Check whether reaching the time limit.
if config.slurm:
done = (death_time is not None and death_time - time.time() <
MAXIMUM_SAVE_TIME)
if rank == 0 and done:
print("Saving progress before exiting.")
model.save(iteration)
print("Running restart command:", " ".join(resume_command))
# Submit restart command.
subprocess.check_call(resume_command)
break
if rank == 0 and iteration % config.save_every == 0:
# Save parameters.
model.save(iteration)
# Close TensorBoard.
if rank == 0:
tb.close()
if __name__ == "__main__":
# Create parser.
parser = jsonargparse.ArgumentParser(description="Train WaveNet model",
formatter_class='default_argparse')
add_options_to_parser(parser)
utils.add_config_options_to_parser(parser)
# Parse argument from both command line and yaml config file.
# For conflicting updates to the same field,
# the preceding update will be overwritten by the following one.
config = parser.parse_args()
train(config)

View File

@ -0,0 +1,143 @@
import itertools
import os
import time
import jsonargparse
import numpy as np
import paddle.fluid.dygraph as dg
def add_config_options_to_parser(parser):
parser.add_argument('--valid_size', type=int,
help="size of the valid dataset")
parser.add_argument('--train_clip_second', type=float,
help="the length of audio clip for training")
parser.add_argument('--sample_rate', type=int,
help="sampling rate of audio data file")
parser.add_argument('--fft_window_shift', type=int,
help="the shift of fft window for each frame")
parser.add_argument('--fft_window_size', type=int,
help="the size of fft window for each frame")
parser.add_argument('--fft_size', type=int,
help="the size of fft filter on each frame")
parser.add_argument('--mel_bands', type=int,
help="the number of mel bands when calculating mel spectrograms")
parser.add_argument('--seed', type=int,
help="seed of random initialization for the model")
parser.add_argument('--batch_size', type=int,
help="batch size for training")
parser.add_argument('--test_every', type=int,
help="test interval during training")
parser.add_argument('--save_every', type=int,
help="checkpointing interval during training")
parser.add_argument('--max_iterations', type=int,
help="maximum training iterations")
parser.add_argument('--layers', type=int,
help="number of dilated convolution layers")
parser.add_argument('--kernel_width', type=int,
help="dilated convolution kernel width")
parser.add_argument('--dilation_block', type=list,
help="dilated convolution kernel width")
parser.add_argument('--residual_channels', type=int)
parser.add_argument('--skip_channels', type=int)
parser.add_argument('--loss_type', type=str,
help="mix-gaussian-pdf or softmax")
parser.add_argument('--num_channels', type=int, default=None,
help="number of channels for softmax output")
parser.add_argument('--num_mixtures', type=int, default=None,
help="number of gaussian mixtures for gaussian output")
parser.add_argument('--log_scale_min', type=float, default=None,
help="minimum clip value of log variance of gaussian output")
parser.add_argument('--conditioner.filter_sizes', type=list,
help="conv2d tranpose op filter sizes for building conditioner")
parser.add_argument('--conditioner.upsample_factors', type=list,
help="list of upsample factors for building conditioner")
parser.add_argument('--learning_rate', type=float)
parser.add_argument('--gradient_max_norm', type=float)
parser.add_argument('--anneal.every', type=int,
help="step interval for annealing learning rate")
parser.add_argument('--anneal.rate', type=float)
parser.add_argument('--config', action=jsonargparse.ActionConfigFile)
def pad_to_size(array, length, pad_with=0.0):
"""
Pad an array on the first (length) axis to a given length.
"""
padding = length - array.shape[0]
assert padding >= 0, "Padding required was less than zero"
paddings = [(0, 0)] * len(array.shape)
paddings[0] = (0, padding)
return np.pad(array, paddings, mode='constant', constant_values=pad_with)
def calculate_context_size(config):
dilations = list(
itertools.islice(
itertools.cycle(config.dilation_block), config.layers))
config.context_size = sum(dilations) + 1
print("Context size is", config.context_size)
def load_latest_checkpoint(checkpoint_dir, rank=0):
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
# Create checkpoint index file if not exist.
if (not os.path.isfile(checkpoint_path)) and rank == 0:
with open(checkpoint_path, "w") as handle:
handle.write("model_checkpoint_path: step-0")
# Make sure that other process waits until checkpoint file is created
# by process 0.
while not os.path.isfile(checkpoint_path):
time.sleep(1)
# Fetch the latest checkpoint index.
with open(checkpoint_path, "r") as handle:
latest_checkpoint = handle.readline().split()[-1]
iteration = int(latest_checkpoint.split("-")[-1])
return iteration
def save_latest_checkpoint(checkpoint_dir, iteration):
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
# Update the latest checkpoint index.
with open(checkpoint_path, "w") as handle:
handle.write("model_checkpoint_path: step-{}".format(iteration))
def load_parameters(checkpoint_dir, rank, model, optimizer=None,
iteration=None, file_path=None):
if file_path is None:
if iteration is None:
iteration = load_latest_checkpoint(checkpoint_dir, rank)
if iteration == 0:
return
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
model_dict, optimizer_dict = dg.load_dygraph(file_path)
model.set_dict(model_dict)
print("[checkpoint] Rank {}: loaded model from {}".format(rank, file_path))
if optimizer and optimizer_dict:
optimizer.set_dict(optimizer_dict)
print("[checkpoint] Rank {}: loaded optimizer state from {}".format(
rank, file_path))
def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None):
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
model_dict = model.state_dict()
dg.save_dygraph(model_dict, file_path)
print("[checkpoint] Saved model to {}".format(file_path))
if optimizer:
opt_dict = optimizer.state_dict()
dg.save_dygraph(opt_dict, file_path)
print("[checkpoint] Saved optimzier state to {}".format(file_path))

View File

@ -0,0 +1,176 @@
import itertools
import os
import time
import librosa
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
import utils
from data import LJSpeech
from wavenet_modules import WaveNetModule
class WaveNet():
def __init__(self, config, checkpoint_dir, parallel=False, rank=0,
nranks=1, tb_logger=None):
# Process config to calculate the context size
dilations = list(
itertools.islice(
itertools.cycle(config.dilation_block), config.layers))
config.context_size = sum(dilations) + 1
self.config = config
self.checkpoint_dir = checkpoint_dir
self.parallel = parallel
self.rank = rank
self.nranks = nranks
self.tb_logger = tb_logger
def build(self, training=True):
config = self.config
dataset = LJSpeech(config, self.nranks, self.rank)
self.trainloader = dataset.trainloader
self.validloader = dataset.validloader
wavenet = WaveNetModule("wavenet", config, self.rank)
# Dry run once to create and initalize all necessary parameters.
audio = dg.to_variable(np.random.randn(1, 20000).astype(np.float32))
mel = dg.to_variable(
np.random.randn(1, 100, self.config.mel_bands).astype(np.float32))
audio_start = dg.to_variable(np.array([0], dtype=np.int32))
wavenet(audio, mel, audio_start)
if training:
# Create Learning rate scheduler.
lr_scheduler = dg.ExponentialDecay(
learning_rate = config.learning_rate,
decay_steps = config.anneal.every,
decay_rate = config.anneal.rate,
staircase=True)
optimizer = fluid.optimizer.AdamOptimizer(
learning_rate=lr_scheduler)
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
config.gradient_max_norm)
# Load parameters.
utils.load_parameters(self.checkpoint_dir, self.rank,
wavenet, optimizer,
iteration=config.iteration,
file_path=config.checkpoint)
print("Rank {}: checkpoint loaded.".format(self.rank))
# Data parallelism.
if self.parallel:
strategy = dg.parallel.prepare_context()
wavenet = dg.parallel.DataParallel(wavenet, strategy)
self.wavenet = wavenet
self.optimizer = optimizer
self.clipper = clipper
else:
# Load parameters.
utils.load_parameters(self.checkpoint_dir, self.rank, wavenet,
iteration=config.iteration,
file_path=config.checkpoint)
print("Rank {}: checkpoint loaded.".format(self.rank))
self.wavenet = wavenet
def train_step(self, iteration):
self.wavenet.train()
start_time = time.time()
audios, mels, audio_starts = next(self.trainloader)
load_time = time.time()
loss, _ = self.wavenet(audios, mels, audio_starts)
if self.parallel:
# loss = loss / num_trainers
loss = self.wavenet.scale_loss(loss)
loss.backward()
self.wavenet.apply_collective_grads()
else:
loss.backward()
if isinstance(self.optimizer._learning_rate,
fluid.optimizer.LearningRateDecay):
current_lr = self.optimizer._learning_rate.step().numpy()
else:
current_lr = self.optimizer._learning_rate
self.optimizer.minimize(loss, grad_clip=self.clipper,
parameter_list=self.wavenet.parameters())
self.wavenet.clear_gradients()
graph_time = time.time()
if self.rank == 0:
loss_val = float(loss.numpy()) * self.nranks
log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \
"Time: {:.3f}/{:.3f}".format(
self.rank, iteration, loss_val,
load_time - start_time, graph_time - load_time)
print(log)
tb = self.tb_logger
tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration)
tb.add_scalar("Learning-Rate", current_lr, iteration)
@dg.no_grad
def valid_step(self, iteration):
self.wavenet.eval()
total_loss = []
sample_audios = []
start_time = time.time()
for audios, mels, audio_starts in self.validloader():
loss, sample_audio = self.wavenet(audios, mels, audio_starts, True)
total_loss.append(float(loss.numpy()))
sample_audios.append(sample_audio)
total_time = time.time() - start_time
if self.rank == 0:
loss_val = np.mean(total_loss)
log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format(
self.rank, loss_val, total_time)
print(log)
tb = self.tb_logger
tb.add_scalar("Valid-Avg-Loss", loss_val, iteration)
tb.add_audio("Teacher-Forced-Audio-0", sample_audios[0].numpy(),
iteration, sample_rate=self.config.sample_rate)
tb.add_audio("Teacher-Forced-Audio-1", sample_audios[1].numpy(),
iteration, sample_rate=self.config.sample_rate)
@dg.no_grad
def infer(self, iteration):
self.wavenet.eval()
config = self.config
sample = config.sample
output = "{}/{}/iter-{}".format(config.output, config.name, iteration)
os.makedirs(output, exist_ok=True)
filename = "{}/valid_{}.wav".format(output, sample)
print("Synthesize sample {}, save as {}".format(sample, filename))
mels_list = [mels for _, mels, _ in self.validloader()]
start_time = time.time()
syn_audio = self.wavenet.synthesize(mels_list[sample])
syn_time = time.time() - start_time
print("audio shape {}, synthesis time {}".format(
syn_audio.shape, syn_time))
librosa.output.write_wav(filename, syn_audio,
sr=config.sample_rate)
def save(self, iteration):
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.wavenet, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)

View File

@ -0,0 +1,381 @@
import itertools
import numpy as np
import paddle.fluid.dygraph as dg
from paddle import fluid
from parakeet.modules import conv, modules
def get_padding(filter_size, stride, padding_type='same'):
if padding_type == 'same':
padding = [(x - y) // 2 for x, y in zip(filter_size, stride)]
else:
raise ValueError("Only support same padding")
return padding
def extract_slices(x, audio_starts, audio_length, rank):
slices = []
for i in range(x.shape[0]):
start = audio_starts.numpy()[i]
end = start + audio_length
slice = fluid.layers.slice(
x, axes=[0, 1], starts=[i, start], ends=[i+1, end])
slices.append(fluid.layers.squeeze(slice, [0]))
x = fluid.layers.stack(slices, axis=0)
return x
class Conditioner(dg.Layer):
def __init__(self, name_scope, config):
super(Conditioner, self).__init__(name_scope)
upsample_factors = config.conditioner.upsample_factors
filter_sizes = config.conditioner.filter_sizes
assert np.prod(upsample_factors) == config.fft_window_shift
self.deconvs = []
for i, up_scale in enumerate(upsample_factors):
stride = (up_scale, 1)
padding = get_padding(filter_sizes[i], stride)
self.deconvs.append(
modules.Conv2DTranspose(
self.full_name(),
num_filters=1,
filter_size=filter_sizes[i],
padding=padding,
stride=stride))
# Register python list as parameters.
for i, layer in enumerate(self.deconvs):
self.add_sublayer("conv_transpose_{}".format(i), layer)
def forward(self, x):
x = fluid.layers.unsqueeze(x, 1)
for layer in self.deconvs:
x = fluid.layers.leaky_relu(layer(x), alpha=0.4)
return fluid.layers.squeeze(x, [1])
class WaveNetModule(dg.Layer):
def __init__(self, name_scope, config, rank):
super(WaveNetModule, self).__init__(name_scope)
self.rank = rank
self.conditioner = Conditioner(self.full_name(), config)
self.dilations = list(
itertools.islice(
itertools.cycle(config.dilation_block), config.layers))
self.context_size = sum(self.dilations) + 1
self.log_scale_min = config.log_scale_min
self.config = config
print("dilations", self.dilations)
print("context_size", self.context_size)
if config.loss_type == "softmax":
self.embedding_fc = modules.Embedding(
self.full_name(),
num_embeddings=config.num_channels,
embed_dim=config.residual_channels,
std=0.1)
elif config.loss_type == "mix-gaussian-pdf":
self.embedding_fc = modules.FC(
self.full_name(),
in_features=1,
size=config.residual_channels,
num_flatten_dims=2,
relu=False)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
self.dilated_causal_convs = []
for dilation in self.dilations:
self.dilated_causal_convs.append(
modules.Conv1D_GU(
self.full_name(),
conditioner_dim=config.mel_bands,
in_channels=config.residual_channels,
num_filters=config.residual_channels,
filter_size=config.kernel_width,
dilation=dilation,
causal=True
)
)
for i, layer in enumerate(self.dilated_causal_convs):
self.add_sublayer("dilated_causal_conv_{}".format(i), layer)
self.fc1 = modules.FC(
self.full_name(),
in_features=config.residual_channels,
size=config.skip_channels,
num_flatten_dims=2,
relu=True,
act="relu")
self.fc2 = modules.FC(
self.full_name(),
in_features=config.skip_channels,
size=config.skip_channels,
num_flatten_dims=2,
relu=True,
act="relu")
if config.loss_type == "softmax":
self.fc3 = modules.FC(
self.full_name(),
in_features=config.skip_channels,
size=config.num_channels,
num_flatten_dims=2,
relu=False)
elif config.loss_type == "mix-gaussian-pdf":
self.fc3 = modules.FC(
self.full_name(),
in_features=config.skip_channels,
size=3 * config.num_mixtures,
num_flatten_dims=2,
relu=False)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
def sample_softmax(self, mix_parameters):
batch, length, hidden = mix_parameters.shape
mix_param_2d = fluid.layers.reshape(mix_parameters,
[batch * length, hidden])
mix_param_2d = fluid.layers.softmax(mix_param_2d, axis=-1)
# quantized: [batch * length]
quantized = fluid.layers.cast(fluid.layers.sampling_id(mix_param_2d),
dtype="float32")
samples = (quantized + 0.5) * (2.0 / self.config.num_channels) - 1.0
# samples: [batch * length]
return samples
def sample_mix_gaussian(self, mix_parameters):
# mix_parameters reshape from [bs, len, 3 * num_mixtures]
# to [bs * len, 3 * num_mixtures].
batch, length, hidden = mix_parameters.shape
mix_param_2d = fluid.layers.reshape(mix_parameters,
[batch * length, hidden])
K = hidden // 3
# Unpack the parameters of the mixture of gaussian.
logits_pi = mix_param_2d[:, 0 : K]
mu = mix_param_2d[:, K : 2*K]
log_s = mix_param_2d[:, 2*K : 3*K]
s = fluid.layers.exp(log_s)
pi = fluid.layers.softmax(logits_pi, axis=-1)
comp_samples = fluid.layers.sampling_id(pi)
row_idx = dg.to_variable(np.arange(batch * length))
comp_samples = fluid.layers.stack([row_idx, comp_samples], axis=-1)
mu_comp = fluid.layers.gather_nd(mu, comp_samples)
s_comp = fluid.layers.gather_nd(s, comp_samples)
# N(0, 1) normal sample.
u = fluid.layers.gaussian_random(shape=[batch * length])
samples = mu_comp + u * s_comp
samples = fluid.layers.clip(samples, min=-1.0, max=1.0)
return samples
def softmax_loss(self, targets, mix_parameters):
targets = targets[:, self.context_size:]
mix_parameters = mix_parameters[:, self.context_size:, :]
# Quantized audios to integral values with range [0, num_channels)
num_channels = self.config.num_channels
targets = fluid.layers.clip(targets, min=-1.0, max=0.99999)
quantized = fluid.layers.cast(
(targets + 1.0) / 2.0 * num_channels, dtype="int64")
# per_sample_loss shape: [bs, len, 1]
per_sample_loss = fluid.layers.softmax_with_cross_entropy(
logits=mix_parameters, label=fluid.layers.unsqueeze(quantized, 2))
loss = fluid.layers.reduce_mean(per_sample_loss)
return loss
def mixture_density_loss(self, targets, mix_parameters, log_scale_min):
# targets: [bs, len]
# mix_params: [bs, len, 3 * num_mixture]
targets = targets[:, self.context_size:]
mix_parameters = mix_parameters[:, self.context_size:, :]
# log_s: [bs, len, num_mixture]
logits_pi, mu, log_s = fluid.layers.split(
mix_parameters, num_or_sections=3, dim=-1)
pi = fluid.layers.softmax(logits_pi, axis=-1)
log_s = fluid.layers.clip(log_s, min=log_scale_min, max=100.0)
inv_s = fluid.layers.exp(0.0 - log_s)
# Calculate gaussian loss.
targets = fluid.layers.unsqueeze(targets, -1)
targets = fluid.layers.expand(targets, [1, 1, self.config.num_mixtures])
x_std = inv_s * (targets - mu)
exponent = fluid.layers.exp(-0.5 * x_std * x_std)
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_s * exponent
pdf_x = pi * pdf_x
# pdf_x: [bs, len]
pdf_x = fluid.layers.reduce_sum(pdf_x, dim=-1)
per_sample_loss = 0.0 - fluid.layers.log(pdf_x + 1e-9)
loss = fluid.layers.reduce_mean(per_sample_loss)
return loss
def forward(self, audios, mels, audio_starts, sample=False):
# Build conditioner based on mels.
full_conditioner = self.conditioner(mels)
# Slice conditioners.
audio_length = audios.shape[1]
conditioner = extract_slices(full_conditioner,
audio_starts, audio_length, self.rank)
# input_audio, target_audio: [bs, len]
input_audios = audios[:, :-1]
target_audios = audios[:, 1:]
# conditioner: [bs, len, mel_bands]
conditioner = conditioner[:, 1:, :]
loss_type = self.config.loss_type
if loss_type == "softmax":
input_audios = fluid.layers.clip(
input_audios, min=-1.0, max=0.99999)
# quantized have values in [0, num_channels)
quantized = fluid.layers.cast(
(input_audios + 1.0) / 2.0 * self.config.num_channels,
dtype="int64")
layer_input = self.embedding_fc(
fluid.layers.unsqueeze(quantized, 2))
elif loss_type == "mix-gaussian-pdf":
layer_input = self.embedding_fc(
fluid.layers.unsqueeze(input_audios, 2))
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
# layer_input: [bs, res_channel, 1, len]
layer_input = fluid.layers.unsqueeze(
fluid.layers.transpose(layer_input, perm=[0, 2, 1]), 2)
# conditioner: [bs, mel_bands, 1, len]
conditioner = fluid.layers.unsqueeze(
fluid.layers.transpose(conditioner, perm=[0, 2, 1]), 2)
skip = None
for i, layer in enumerate(self.dilated_causal_convs):
# layer_input: [bs, res_channel, 1, len]
# skip: [bs, res_channel, 1, len]
layer_input, skip = layer(layer_input, skip, conditioner)
# Reshape skip to [bs, len, res_channel]
skip = fluid.layers.transpose(
fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
# Sample teacher-forced audio.
sample_audios = None
if sample:
if loss_type == "softmax":
sample_audios = self.sample_softmax(mix_parameters)
elif loss_type == "mix-gaussian-pdf":
sample_audios = self.sample_mix_gaussian(mix_parameters)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
if loss_type == "softmax":
loss = self.softmax_loss(target_audios, mix_parameters)
elif loss_type == "mix-gaussian-pdf":
loss = self.mixture_density_loss(target_audios,
mix_parameters, self.log_scale_min)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
return loss, sample_audios
def synthesize(self, mels):
self.start_new_sequence()
bs, n_frames, mel_bands = mels.shape
conditioner = self.conditioner(mels)
time_steps = conditioner.shape[1]
print("input mels shape", mels.shape)
print("Total synthesis steps", time_steps)
loss_type = self.config.loss_type
audio_samples = []
current_sample = fluid.layers.zeros(shape=[bs, 1, 1], dtype="float32")
for i in range(time_steps):
if i % 100 == 0:
print("Step", i)
# Convert from real value sample to audio embedding.
# audio_input: [bs, 1, channel]
if loss_type == "softmax":
current_sample = fluid.layers.clip(
current_sample, min=-1.0, max=0.99999)
# quantized have values in [0, num_channels)
quantized = fluid.layers.cast(
(current_sample + 1.0) / 2.0 * self.config.num_channels,
dtype="int64")
audio_input = self.embedding_fc(quantized)
elif loss_type == "mix-gaussian-pdf":
audio_input = self.embedding_fc(current_sample)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
# [bs, channel, 1, 1]
audio_input = fluid.layers.unsqueeze(
fluid.layers.transpose(audio_input, perm=[0, 2, 1]), 2)
# [bs, mel_bands]
cond_input = conditioner[:, i, :]
# [bs, mel_bands, 1, 1]
cond_input = fluid.layers.reshape(
cond_input, cond_input.shape + [1, 1])
skip = None
for layer in self.dilated_causal_convs:
audio_input, skip = layer.add_input(
audio_input, skip, cond_input)
# [bs, 1, channel]
skip = fluid.layers.transpose(
fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
if loss_type == "softmax":
sample = self.sample_softmax(mix_parameters)
elif loss_type == "mix-gaussian-pdf":
sample = self.sample_mix_gaussian(mix_parameters)
else:
raise ValueError(
"loss_type {} is unsupported!".format(loss_type))
audio_samples.append(sample)
# [bs]
current_sample = audio_samples[-1]
# [bs, 1, 1]
current_sample = fluid.layers.reshape(current_sample,
current_sample.shape + [1, 1])
# syn_audio: [num_samples]
syn_audio = fluid.layers.concat(audio_samples, axis=0).numpy()
return syn_audio
def start_new_sequence(self):
for layer in self.sublayers():
if isinstance(layer, conv.Conv1D):
layer.start_new_sequence()

View File

@ -26,6 +26,7 @@ def FC(name_scope,
in_features,
size,
num_flatten_dims=1,
relu=False,
dropout=0.0,
epsilon=1e-30,
act=None,
@ -39,7 +40,11 @@ def FC(name_scope,
# stds
if isinstance(in_features, int):
in_features = [in_features]
stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds
]
@ -456,3 +461,152 @@ class PositionEmbedding(dg.Layer):
return out
else:
raise Exception("Then you can just use position rate at init")
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1D_GU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
skip (Variable): Shape(B, C_in, 1, T), skip connection.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1D_GU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1D_GU, where
C_out means the output channels of Conv1D_GU.
skip (Variable): Shape(B, C_out, 1, T), skip connection.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
skip: shape(B, num_filters, 1, time_steps), skip connection
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
x: shape(B, num_filters, 1, time_steps), where time_steps = 1
skip: skip connection, same shape as x
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate),
fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer