# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import paddle from paddle.nn import functional as F __all__ = ["sinusoid_positional_encoding"] def sinusoid_positional_encoding(start_index, length, size, dtype=None): r"""Generate standard positional encoding matrix. .. math:: pe(pos, 2i) = sin(\frac{pos}{10000^{\frac{2i}{size}}}) \\ pe(pos, 2i+1) = cos(\frac{pos}{10000^{\frac{2i}{size}}}) Parameters ---------- start_index : int The start index. length : int The timesteps of the positional encoding to generate. size : int Feature size of positional encoding. Returns ------- Tensor [shape=(length, size)] The positional encoding. Raises ------ ValueError If ``size`` is not divisible by 2. """ if (size % 2 != 0): raise ValueError("size should be divisible by 2") dtype = dtype or paddle.get_default_dtype() channel = np.arange(0, size, 2) index = np.arange(start_index, start_index + length, 1) p = np.expand_dims(index, -1) / (10000**(channel / float(size))) encodings = np.zeros([length, size]) encodings[:, 0::2] = np.sin(p) encodings[:, 1::2] = np.cos(p) encodings = paddle.to_tensor(encodings) return encodings