# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path from multiprocessing import Pool from functools import partial import numpy as np import librosa import soundfile as sf from tqdm import tqdm from praatio import tgio def get_valid_part(fpath): f = tgio.openTextgrid(fpath) start = 0 phone_entry_list = f.tierDict['phones'].entryList first_entry = phone_entry_list[0] if first_entry.label == "sil": start = first_entry.end last_entry = phone_entry_list[-1] if last_entry.label == "sp": end = last_entry.start else: end = last_entry.end return start, end def process_utterance(fpath, source_dir, target_dir, alignment_dir): rel_path = fpath.relative_to(source_dir) opath = target_dir / rel_path apath = (alignment_dir / rel_path).with_suffix(".TextGrid") opath.parent.mkdir(parents=True, exist_ok=True) start, end = get_valid_part(apath) wav, _ = librosa.load(fpath, sr=22050, offset=start, duration=end - start) normalized_wav = wav / np.max(wav) * 0.999 sf.write(opath, normalized_wav, samplerate=22050, subtype='PCM_16') # print(f"{fpath} => {opath}") def preprocess_aishell3(source_dir, target_dir, alignment_dir): source_dir = Path(source_dir).expanduser() target_dir = Path(target_dir).expanduser() alignment_dir = Path(alignment_dir).expanduser() wav_paths = list(source_dir.rglob("*.wav")) print(f"there are {len(wav_paths)} audio files in total") fx = partial( process_utterance, source_dir=source_dir, target_dir=target_dir, alignment_dir=alignment_dir) with Pool(16) as p: list( tqdm( p.imap(fx, wav_paths), total=len(wav_paths), unit="utterance")) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Process audio in AiShell3, trim silence according to the alignment " "files generated by MFA, and normalize volume by peak.") parser.add_argument( "--input", type=str, default="~/datasets/aishell3/train/wav", help="path of the original audio folder in aishell3.") parser.add_argument( "--output", type=str, default="~/datasets/aishell3/train/normalized_wav", help="path of the folder to save the processed audio files.") parser.add_argument( "--alignment", type=str, default="~/datasets/aishell3/train/alignment", help="path of the alignment files.") args = parser.parse_args() preprocess_aishell3(args.input, args.output, args.alignment)