# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid.dygraph as dg import paddle.fluid as fluid from parakeet.models.transformer_tts.utils import * from parakeet.modules.multihead_attention import MultiheadAttention from parakeet.modules.ffn import PositionwiseFeedForward from parakeet.models.transformer_tts.prenet import PreNet from parakeet.models.transformer_tts.post_convnet import PostConvNet class Decoder(dg.Layer): def __init__(self, num_hidden, num_mels=80, outputs_per_step=1, num_head=4, n_layers=3): """Decoder layer of TransformerTTS. Args: num_hidden (int): the number of source vocabulary. n_mels (int, optional): the number of mel bands when calculating mel spectrograms. Defaults to 80. outputs_per_step (int, optional): the num of output frames per step . Defaults to 1. num_head (int, optional): the head number of multihead attention. Defaults to 4. n_layers (int, optional): the layers number of multihead attention. Defaults to 3. """ super(Decoder, self).__init__() self.num_hidden = num_hidden self.num_head = num_head param = fluid.ParamAttr() self.alpha = self.create_parameter( shape=(1, ), attr=param, dtype='float32', default_initializer=fluid.initializer.ConstantInitializer( value=1.0)) self.pos_inp = get_sinusoid_encoding_table( 1024, self.num_hidden, padding_idx=0) self.pos_emb = dg.Embedding( size=[1024, num_hidden], padding_idx=0, param_attr=fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( self.pos_inp), trainable=False)) self.decoder_prenet = PreNet( input_size=num_mels, hidden_size=num_hidden * 2, output_size=num_hidden, dropout_rate=0.2) k = math.sqrt(1.0 / num_hidden) self.linear = dg.Linear( num_hidden, num_hidden, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-k, high=k))) self.selfattn_layers = [ MultiheadAttention(num_hidden, num_hidden // num_head, num_hidden // num_head) for _ in range(n_layers) ] for i, layer in enumerate(self.selfattn_layers): self.add_sublayer("self_attn_{}".format(i), layer) self.attn_layers = [ MultiheadAttention(num_hidden, num_hidden // num_head, num_hidden // num_head) for _ in range(n_layers) ] for i, layer in enumerate(self.attn_layers): self.add_sublayer("attn_{}".format(i), layer) self.ffns = [ PositionwiseFeedForward( num_hidden, num_hidden * num_head, filter_size=1) for _ in range(n_layers) ] for i, layer in enumerate(self.ffns): self.add_sublayer("ffns_{}".format(i), layer) self.mel_linear = dg.Linear( num_hidden, num_mels * outputs_per_step, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-k, high=k))) self.stop_linear = dg.Linear( num_hidden, 1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-k, high=k))) self.postconvnet = PostConvNet( num_mels, num_hidden, filter_size=5, padding=4, num_conv=5, outputs_per_step=outputs_per_step, use_cudnn=True) def forward(self, key, value, query, positional, c_mask): """ Compute decoder outputs. Args: key (Variable): shape(B, T_text, C), dtype float32, the input key of decoder, where T_text means the timesteps of input text, value (Variable): shape(B, T_text, C), dtype float32, the input value of decoder. query (Variable): shape(B, T_mel, C), dtype float32, the input query of decoder, where T_mel means the timesteps of input spectrum, positional (Variable): shape(B, T_mel), dtype int64, the spectrum position. c_mask (Variable): shape(B, T_text, 1), dtype float32, query mask returned from encoder. Returns: mel_out (Variable): shape(B, T_mel, C), the decoder output after mel linear projection. out (Variable): shape(B, T_mel, C), the decoder output after post mel network. stop_tokens (Variable): shape(B, T_mel, 1), the stop tokens of output. attn_list (list[Variable]): len(n_layers), the encoder-decoder attention list. selfattn_list (list[Variable]): len(n_layers), the decoder self attention list. """ # get decoder mask with triangular matrix if fluid.framework._dygraph_tracer()._train_mode: mask = get_dec_attn_key_pad_mask(positional, self.num_head, query.dtype) m_mask = get_non_pad_mask(positional, self.num_head, query.dtype) zero_mask = layers.cast(c_mask == 0, dtype=query.dtype) * -1e30 zero_mask = layers.transpose(zero_mask, perm=[0, 2, 1]) else: len_q = query.shape[1] mask = layers.triu( layers.ones( shape=[len_q, len_q], dtype=query.dtype), diagonal=1) mask = layers.cast(mask != 0, dtype=query.dtype) * -1e30 m_mask, zero_mask = None, None # Decoder pre-network query = self.decoder_prenet(query) # Centered position query = self.linear(query) # Get position embedding positional = self.pos_emb(positional) query = positional * self.alpha + query #positional dropout query = fluid.layers.dropout( query, 0.1, dropout_implementation='upscale_in_train') # Attention decoder-decoder, encoder-decoder selfattn_list = list() attn_list = list() for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers, self.ffns): query, attn_dec = selfattn( query, query, query, mask=mask, query_mask=m_mask) query, attn_dot = attn( key, value, query, mask=zero_mask, query_mask=m_mask) query = ffn(query) selfattn_list.append(attn_dec) attn_list.append(attn_dot) # Mel linear projection mel_out = self.mel_linear(query) # Post Mel Network out = self.postconvnet(mel_out) out = mel_out + out # Stop tokens stop_tokens = self.stop_linear(query) stop_tokens = layers.squeeze(stop_tokens, [-1]) stop_tokens = layers.sigmoid(stop_tokens) return mel_out, out, attn_list, stop_tokens, selfattn_list