import numpy as np import math import parakeet.models.fastspeech.utils import paddle.fluid.dygraph as dg import paddle.fluid.layers as layers import paddle.fluid as fluid from parakeet.modules.customized import Conv1D class LengthRegulator(dg.Layer): def __init__(self, input_size, out_channels, filter_size, dropout=0.1): super(LengthRegulator, self).__init__() self.duration_predictor = DurationPredictor(input_size=input_size, out_channels=out_channels, filter_size=filter_size, dropout=dropout) def LR(self, x, duration_predictor_output, alpha=1.0): output = [] batch_size = x.shape[0] for i in range(batch_size): output.append(self.expand(x[i:i+1], duration_predictor_output[i:i+1], alpha)) output = self.pad(output) return output def pad(self, input_ele): max_len = max([input_ele[i].shape[0] for i in range(len(input_ele))]) out_list = [] for i in range(len(input_ele)): pad_len = max_len - input_ele[i].shape[0] one_batch_padded = layers.pad( input_ele[i], [0, pad_len, 0, 0], pad_value=0.0) out_list.append(one_batch_padded) out_padded = layers.stack(out_list) return out_padded def expand(self, batch, predicted, alpha): out = [] time_steps = batch.shape[1] fertilities = predicted.numpy() batch = layers.squeeze(batch,[0]) for i in range(time_steps): if fertilities[0,i]==0: continue out.append(layers.expand(batch[i: i + 1, :], [int(fertilities[0,i]), 1])) out = layers.concat(out, axis=0) return out def forward(self, x, alpha=1.0, target=None): """ Length Regulator block in FastSpeech. Args: x (Variable): Shape(B, T, C), dtype: float32. The encoder output. alpha (Constant): dtype: float32. The hyperparameter to determine the length of the expanded sequence mel, thereby controlling the voice speed. target (Variable): (Variable, optional): Shape(B, T_text), dtype: int64. The duration of phoneme compute from pretrained transformerTTS. Returns: output (Variable), Shape(B, T, C), the output after exppand. duration_predictor_output (Variable), Shape(B, T, C), the output of duration predictor. """ duration_predictor_output = self.duration_predictor(x) if fluid.framework._dygraph_tracer()._train_mode: output = self.LR(x, target) return output, duration_predictor_output else: duration_predictor_output = layers.round(duration_predictor_output) output = self.LR(x, duration_predictor_output, alpha) mel_pos = dg.to_variable(np.arange(1, output.shape[1]+1)) mel_pos = layers.unsqueeze(mel_pos, [0]) return output, mel_pos class DurationPredictor(dg.Layer): def __init__(self, input_size, out_channels, filter_size, dropout=0.1): super(DurationPredictor, self).__init__() self.input_size = input_size self.out_channels = out_channels self.filter_size = filter_size self.dropout = dropout k = math.sqrt(1 / self.input_size) self.conv1 = Conv1D(num_channels = self.input_size, num_filters = self.out_channels, filter_size = self.filter_size, padding=1, param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()), bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k))) #data_format='NTC') k = math.sqrt(1 / self.out_channels) self.conv2 = Conv1D(num_channels = self.out_channels, num_filters = self.out_channels, filter_size = self.filter_size, padding=1, param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()), bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k))) #data_format='NTC') self.layer_norm1 = dg.LayerNorm(self.out_channels) self.layer_norm2 = dg.LayerNorm(self.out_channels) self.weight = fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()) k = math.sqrt(1 / self.out_channels) self.bias = fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)) self.linear =dg.Linear(self.out_channels, 1, param_attr = self.weight, bias_attr = self.bias) def forward(self, encoder_output): """ Duration Predictor block in FastSpeech. Args: encoder_output (Variable): Shape(B, T, C), dtype: float32. The encoder output. Returns: out (Variable), Shape(B, T, C), the output of duration predictor. """ # encoder_output.shape(N, T, C) out = layers.transpose(encoder_output, [0,2,1]) out = self.conv1(out) out = layers.transpose(out, [0,2,1]) out = layers.dropout(layers.relu(self.layer_norm1(out)), self.dropout) out = layers.transpose(out, [0,2,1]) out = self.conv2(out) out = layers.transpose(out, [0,2,1]) out = layers.dropout(layers.relu(self.layer_norm2(out)), self.dropout) out = layers.relu(self.linear(out)) out = layers.squeeze(out, axes=[-1]) return out