159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
from paddle.fluid.layers import huber_loss
|
|
from paddle.nn import functional as F
|
|
from parakeet.modules.losses import masked_l1_loss, weighted_mean
|
|
from parakeet.modules.ssim import ssim
|
|
from parakeet.training.extensions.evaluator import StandardEvaluator
|
|
from parakeet.training.reporter import report
|
|
from parakeet.training.updaters.standard_updater import StandardUpdater
|
|
logging.basicConfig(
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class SpeedySpeechUpdater(StandardUpdater):
|
|
def __init__(self,
|
|
model,
|
|
optimizer,
|
|
dataloader,
|
|
init_state=None,
|
|
output_dir=None):
|
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def update_core(self, batch):
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
losses_dict = {}
|
|
|
|
decoded, predicted_durations = self.model(
|
|
text=batch["phones"],
|
|
tones=batch["tones"],
|
|
plens=batch["num_phones"],
|
|
durations=batch["durations"])
|
|
|
|
target_mel = batch["feats"]
|
|
spec_mask = F.sequence_mask(
|
|
batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1)
|
|
text_mask = F.sequence_mask(
|
|
batch["num_phones"], dtype=predicted_durations.dtype)
|
|
|
|
# spec loss
|
|
l1_loss = masked_l1_loss(decoded, target_mel, spec_mask)
|
|
|
|
# duration loss
|
|
target_durations = batch["durations"]
|
|
target_durations = paddle.maximum(
|
|
target_durations.astype(predicted_durations.dtype),
|
|
paddle.to_tensor([1.0]))
|
|
duration_loss = weighted_mean(
|
|
huber_loss(
|
|
predicted_durations, paddle.log(target_durations), delta=1.0),
|
|
text_mask, )
|
|
|
|
# ssim loss
|
|
ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1),
|
|
(target_mel * spec_mask).unsqueeze(1))
|
|
|
|
loss = l1_loss + ssim_loss + duration_loss
|
|
|
|
optimizer = self.optimizer
|
|
optimizer.clear_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
report("train/loss", float(loss))
|
|
report("train/l1_loss", float(l1_loss))
|
|
report("train/duration_loss", float(duration_loss))
|
|
report("train/ssim_loss", float(ssim_loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
losses_dict["ssim_loss"] = float(ssim_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
class SpeedySpeechEvaluator(StandardEvaluator):
|
|
def __init__(self, model, dataloader, output_dir=None):
|
|
super().__init__(model, dataloader)
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def evaluate_core(self, batch):
|
|
self.msg = "Evaluate: "
|
|
losses_dict = {}
|
|
|
|
decoded, predicted_durations = self.model(
|
|
text=batch["phones"],
|
|
tones=batch["tones"],
|
|
plens=batch["num_phones"],
|
|
durations=batch["durations"])
|
|
|
|
target_mel = batch["feats"]
|
|
spec_mask = F.sequence_mask(
|
|
batch["num_frames"], dtype=target_mel.dtype).unsqueeze(-1)
|
|
text_mask = F.sequence_mask(
|
|
batch["num_phones"], dtype=predicted_durations.dtype)
|
|
|
|
# spec loss
|
|
l1_loss = masked_l1_loss(decoded, target_mel, spec_mask)
|
|
|
|
# duration loss
|
|
target_durations = batch["durations"]
|
|
target_durations = paddle.maximum(
|
|
target_durations.astype(predicted_durations.dtype),
|
|
paddle.to_tensor([1.0]))
|
|
duration_loss = weighted_mean(
|
|
huber_loss(
|
|
predicted_durations, paddle.log(target_durations), delta=1.0),
|
|
text_mask, )
|
|
|
|
# ssim loss
|
|
ssim_loss = 1.0 - ssim((decoded * spec_mask).unsqueeze(1),
|
|
(target_mel * spec_mask).unsqueeze(1))
|
|
|
|
loss = l1_loss + ssim_loss + duration_loss
|
|
|
|
# import pdb; pdb.set_trace()
|
|
|
|
report("eval/loss", float(loss))
|
|
report("eval/l1_loss", float(l1_loss))
|
|
report("eval/duration_loss", float(duration_loss))
|
|
report("eval/ssim_loss", float(ssim_loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
losses_dict["ssim_loss"] = float(ssim_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
self.logger.info(self.msg)
|