ParakeetEricRoss/parakeet/modules/feed_forward.py

52 lines
1.6 KiB
Python

import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
import paddle.fluid as fluid
import math
from parakeet.modules.layers import Conv
class PositionwiseFeedForward(dg.Layer):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, num_hidden, filter_size, padding=0, use_cudnn=True, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.num_hidden = num_hidden
self.use_cudnn = use_cudnn
self.dropout = dropout
self.w_1 = Conv(in_channels = d_in,
out_channels = num_hidden,
filter_size = filter_size,
padding=padding,
use_cudnn = use_cudnn,
data_format = "NTC")
self.w_2 = Conv(in_channels = num_hidden,
out_channels = d_in,
filter_size = filter_size,
padding=padding,
use_cudnn = use_cudnn,
data_format = "NTC")
self.layer_norm = dg.LayerNorm(d_in)
def forward(self, input):
"""
Feed Forward Network.
Args:
input (Variable): Shape(B, T, C), dtype: float32. The input value.
Returns:
output (Variable), Shape(B, T, C), the result after FFN.
"""
#FFN Networt
x = self.w_2(layers.relu(self.w_1(input)))
# dropout
x = layers.dropout(x, self.dropout)
# residual connection
x = x + input
#layer normalization
output = self.layer_norm(x)
return output