ParakeetEricRoss/parakeet/models/transformer_tts/encoder.py

57 lines
2.6 KiB
Python

import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.models.transformer_tts.utils import *
from parakeet.modules.multihead_attention import MultiheadAttention
from parakeet.modules.ffn import PositionwiseFeedForward
from parakeet.models.transformer_tts.encoderprenet import EncoderPrenet
class Encoder(dg.Layer):
def __init__(self, embedding_size, num_hidden, num_head=4):
super(Encoder, self).__init__()
self.num_hidden = num_hidden
param = fluid.ParamAttr(initializer=fluid.initializer.Constant(value=1.0))
self.alpha = self.create_parameter(shape=(1, ), attr=param, dtype='float32')
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
self.pos_emb = dg.Embedding(size=[1024, num_hidden],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
trainable=False))
self.encoder_prenet = EncoderPrenet(embedding_size = embedding_size,
num_hidden = num_hidden,
use_cudnn=True)
self.layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
for i, layer in enumerate(self.layers):
self.add_sublayer("self_attn_{}".format(i), layer)
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*num_head, filter_size=1, use_cudnn = True) for _ in range(3)]
for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer)
def forward(self, x, positional):
if fluid.framework._dygraph_tracer()._train_mode:
query_mask = get_non_pad_mask(positional)
mask = get_attn_key_pad_mask(positional, x)
else:
query_mask, mask = None, None
# Encoder pre_network
x = self.encoder_prenet(x) #(N,T,C)
# Get positional encoding
positional = self.pos_emb(positional)
x = positional * self.alpha + x #(N, T, C)
# Positional dropout
x = layers.dropout(x, 0.1)
# Self attention encoder
attentions = list()
for layer, ffn in zip(self.layers, self.ffns):
x, attention = layer(x, x, x, mask = mask, query_mask = query_mask)
x = ffn(x)
attentions.append(attention)
return x, query_mask, attentions