96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.fluid as fluid
|
|
from parakeet.models.transformer_tts.utils import *
|
|
from parakeet.models.fastspeech.fft_block import FFTBlock
|
|
|
|
|
|
class Decoder(dg.Layer):
|
|
def __init__(self,
|
|
len_max_seq,
|
|
n_layers,
|
|
n_head,
|
|
d_k,
|
|
d_v,
|
|
d_model,
|
|
d_inner,
|
|
fft_conv1d_kernel,
|
|
fft_conv1d_padding,
|
|
dropout=0.1):
|
|
super(Decoder, self).__init__()
|
|
|
|
n_position = len_max_seq + 1
|
|
self.n_head = n_head
|
|
self.pos_inp = get_sinusoid_encoding_table(
|
|
n_position, d_model, padding_idx=0)
|
|
self.position_enc = dg.Embedding(
|
|
size=[n_position, d_model],
|
|
padding_idx=0,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.NumpyArrayInitializer(
|
|
self.pos_inp),
|
|
trainable=False))
|
|
self.layer_stack = [
|
|
FFTBlock(
|
|
d_model,
|
|
d_inner,
|
|
n_head,
|
|
d_k,
|
|
d_v,
|
|
fft_conv1d_kernel,
|
|
fft_conv1d_padding,
|
|
dropout=dropout) for _ in range(n_layers)
|
|
]
|
|
for i, layer in enumerate(self.layer_stack):
|
|
self.add_sublayer('fft_{}'.format(i), layer)
|
|
|
|
def forward(self, enc_seq, enc_pos, non_pad_mask, slf_attn_mask=None):
|
|
"""
|
|
Decoder layer of FastSpeech.
|
|
Args:
|
|
enc_seq (Variable): The output of length regulator.
|
|
Shape: (B, T_text, C), T_text means the timesteps of input text,
|
|
dtype: float32.
|
|
enc_pos (Variable): The spectrum position.
|
|
Shape: (B, T_mel), T_mel means the timesteps of input spectrum,
|
|
dtype: int64.
|
|
non_pad_mask (Variable): the mask with non pad.
|
|
Shape: (B, T_mel, 1),
|
|
dtype: int64.
|
|
slf_attn_mask (Variable, optional): the mask of mel spectrum. Defaults to None.
|
|
Shape: (B, T_mel, T_mel),
|
|
dtype: int64.
|
|
|
|
Returns:
|
|
dec_output (Variable): the decoder output.
|
|
Shape: (B, T_mel, C).
|
|
dec_slf_attn_list (list[Variable]): the decoder self attention list.
|
|
Len: n_layers.
|
|
"""
|
|
dec_slf_attn_list = []
|
|
slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1])
|
|
|
|
# -- Forward
|
|
dec_output = enc_seq + self.position_enc(enc_pos)
|
|
|
|
for dec_layer in self.layer_stack:
|
|
dec_output, dec_slf_attn = dec_layer(
|
|
dec_output,
|
|
non_pad_mask=non_pad_mask,
|
|
slf_attn_mask=slf_attn_mask)
|
|
dec_slf_attn_list += [dec_slf_attn]
|
|
|
|
return dec_output, dec_slf_attn_list
|