ParakeetEricRoss/examples/transformer_tts
chenfeiyu 3aa6aed0fb fix a config key error 2021-05-18 18:57:13 +08:00
..
README.md add ge2e and tacotron2_aishell3 example (#107) 2021-05-13 17:49:50 +08:00
config.py fix a config key error 2021-05-18 18:57:13 +08:00
ljspeech.py add ge2e and tacotron2_aishell3 example (#107) 2021-05-13 17:49:50 +08:00
preprocess.py fix a config key error 2021-05-18 18:57:13 +08:00
synthesize.py add ge2e and tacotron2_aishell3 example (#107) 2021-05-13 17:49:50 +08:00
train.py add ge2e and tacotron2_aishell3 example (#107) 2021-05-13 17:49:50 +08:00

README.md

TransformerTTS with LJSpeech

Dataset

Download the datasaet.

wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2

Extract the dataset.

tar xjvf LJSpeech-1.1.tar.bz2

Preprocess the dataset.

Assume the path to save the preprocessed dataset is ljspeech_transformer_tts. Run the command below to preprocess the dataset.

python preprocess.py --input=LJSpeech-1.1/  --output=ljspeech_transformer_tts

Train the model

The training script requires 4 command line arguments. --data is the path of the training dataset, --output is the path of the output direcctory (we recommend to use a subdirectory in runs to manage different experiments.)

--device should be "cpu" or "gpu", --nprocs is the number of processes to train the model in parallel.

python train.py --data=ljspeech_transformer_tts/ --output=runs/test --device="gpu" --nprocs=1

If you want distributed training, set a larger --nprocs (e.g. 4). Note that distributed training with cpu is not supported yet.

Synthesize

Synthesize waveform. We assume the --input is a text file, one sentence per line, and --output is a directory to save the synthesized mel spectrogram(log magnitude) in .npy format. The mel spectrograms can be used with Waveflow to generate waveforms.

--checkpoint_path should be the path of the parameter file (.pdparams) to load. Note that the extention name .pdparmas is not included here.

--device specifies to device to run synthesis on.

python synthesize.py --input=sentence.txt --output=mels/ --checkpoint_path='step-310000' --device="gpu" --verbose

Pretrained Model

Pretrained model can be downloaded here. transformer_tts_ljspeech_ckpt_0.3.zip.