ParakeetEricRoss/parakeet/models/speedyspeech.py

223 lines
7.7 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from parakeet.modules.expansion import expand
from parakeet.modules.positional_encoding import sinusoid_position_encoding
class ResidualBlock(nn.Layer):
def __init__(self, channels, kernel_size, dilation, n=2):
super().__init__()
blocks = [
nn.Sequential(
nn.Conv1D(
channels,
channels,
kernel_size,
dilation=dilation,
padding="same",
data_format="NLC"),
nn.ReLU(),
nn.BatchNorm1D(channels, data_format="NLC"), ) for _ in range(n)
]
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
return x + self.blocks(x)
class TextEmbedding(nn.Layer):
def __init__(self,
vocab_size: int,
embedding_size: int,
tone_vocab_size: int=None,
tone_embedding_size: int=None,
padding_idx: int=None,
tone_padding_idx: int=None,
concat: bool=False):
super().__init__()
self.text_embedding = nn.Embedding(vocab_size, embedding_size,
padding_idx)
if tone_vocab_size:
tone_embedding_size = tone_embedding_size or embedding_size
if tone_embedding_size != embedding_size and not concat:
raise ValueError(
"embedding size != tone_embedding size, only conat is avaiable."
)
self.tone_embedding = nn.Embedding(
tone_vocab_size, tone_embedding_size, tone_padding_idx)
self.concat = concat
def forward(self, text, tone=None):
text_embed = self.text_embedding(text)
if tone is None:
return text_embed
tone_embed = self.tone_embedding(tone)
if self.concat:
embed = paddle.concat([text_embed, tone_embed], -1)
else:
embed = text_embed + tone_embed
return embed
class SpeedySpeechEncoder(nn.Layer):
def __init__(self, vocab_size, tone_size, hidden_size, kernel_size,
dilations):
super().__init__()
self.embedding = TextEmbedding(
vocab_size,
hidden_size,
tone_size,
padding_idx=0,
tone_padding_idx=0)
self.prenet = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(), )
res_blocks = [
ResidualBlock(hidden_size, kernel_size, d, n=2) for d in dilations
]
self.res_blocks = nn.Sequential(*res_blocks)
self.postnet1 = nn.Sequential(nn.Linear(hidden_size, hidden_size))
self.postnet2 = nn.Sequential(
nn.ReLU(),
nn.BatchNorm1D(hidden_size, data_format="NLC"),
nn.Linear(hidden_size, hidden_size), )
def forward(self, text, tones):
embedding = self.embedding(text, tones)
embedding = self.prenet(embedding)
x = self.res_blocks(embedding)
x = embedding + self.postnet1(x)
x = self.postnet2(x)
return x
class DurationPredictor(nn.Layer):
def __init__(self, hidden_size):
super().__init__()
self.layers = nn.Sequential(
ResidualBlock(hidden_size, 4, 1, n=1),
ResidualBlock(hidden_size, 3, 1, n=1),
ResidualBlock(hidden_size, 1, 1, n=1), nn.Linear(hidden_size, 1))
def forward(self, x):
return paddle.squeeze(self.layers(x), -1)
class SpeedySpeechDecoder(nn.Layer):
def __init__(self, hidden_size, output_size, kernel_size, dilations):
super().__init__()
res_blocks = [
ResidualBlock(hidden_size, kernel_size, d, n=2) for d in dilations
]
self.res_blocks = nn.Sequential(*res_blocks)
self.postnet1 = nn.Sequential(nn.Linear(hidden_size, hidden_size))
self.postnet2 = nn.Sequential(
ResidualBlock(hidden_size, kernel_size, 1, n=2),
nn.Linear(hidden_size, output_size))
def forward(self, x):
xx = self.res_blocks(x)
x = x + self.postnet1(xx)
x = self.postnet2(x)
return x
class SpeedySpeech(nn.Layer):
def __init__(
self,
vocab_size,
encoder_hidden_size,
encoder_kernel_size,
encoder_dilations,
duration_predictor_hidden_size,
decoder_hidden_size,
decoder_output_size,
decoder_kernel_size,
decoder_dilations,
tone_size=None, ):
super().__init__()
encoder = SpeedySpeechEncoder(vocab_size, tone_size,
encoder_hidden_size, encoder_kernel_size,
encoder_dilations)
duration_predictor = DurationPredictor(duration_predictor_hidden_size)
decoder = SpeedySpeechDecoder(decoder_hidden_size, decoder_output_size,
decoder_kernel_size, decoder_dilations)
self.encoder = encoder
self.duration_predictor = duration_predictor
self.decoder = decoder
def forward(self, text, tones, plens, durations):
encodings = self.encoder(text, tones)
pred_durations = self.duration_predictor(encodings.detach()) # (B, T)
# expand encodings
durations_to_expand = durations
encodings = expand(encodings, durations_to_expand)
# decode
# remove positional encoding here
_, t_dec, feature_size = encodings.shape
encodings += sinusoid_position_encoding(t_dec, feature_size)
decoded = self.decoder(encodings)
return decoded, pred_durations
def inference(self, text, tones):
# text: [T]
# tones: [T]
text = text.unsqueeze(0)
if tones is not None:
tones = tones.unsqueeze(0)
encodings = self.encoder(text, tones)
pred_durations = self.duration_predictor(encodings) # (1, T)
durations_to_expand = paddle.round(pred_durations.exp())
durations_to_expand = (durations_to_expand).astype(paddle.int64)
slens = paddle.sum(durations_to_expand, -1) # [1]
t_dec = slens[0] # [1]
t_enc = paddle.shape(pred_durations)[-1]
M = paddle.zeros([1, t_dec, t_enc])
k = paddle.full([1], 0, dtype=paddle.int64)
for j in range(t_enc):
d = durations_to_expand[0, j]
M[0, k:k + d, j] = 1
k += d
encodings = paddle.matmul(M, encodings)
shape = paddle.shape(encodings)
t_dec, feature_size = shape[1], shape[2]
encodings += sinusoid_position_encoding(t_dec, feature_size)
decoded = self.decoder(encodings)
return decoded[0]
class SpeedySpeechInference(nn.Layer):
def __init__(self, normalizer, speedyspeech_model):
super().__init__()
self.normalizer = normalizer
self.acoustic_model = speedyspeech_model
def forward(self, phones, tones):
normalized_mel = self.acoustic_model.inference(phones, tones)
logmel = self.normalizer.inverse(normalized_mel)
return logmel