ParakeetEricRoss/parakeet/models/deepvoice3/attention.py

123 lines
5.5 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import numpy as np
from collections import namedtuple
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as F
import paddle.fluid.initializer as I
from parakeet.modules.weight_norm import Linear
WindowRange = namedtuple("WindowRange", ["backward", "ahead"])
class Attention(dg.Layer):
def __init__(self,
query_dim,
embed_dim,
dropout=0.0,
window_range=WindowRange(-1, 3),
key_projection=True,
value_projection=True):
"""Attention Layer for Deep Voice 3.
Args:
query_dim (int): the dimension of query vectors. (The size of a single vector of query.)
embed_dim (int): the dimension of keys and values.
dropout (float, optional): dropout probability of attention. Defaults to 0.0.
window_range (WindowRange, optional): range of attention, this is only used at inference. Defaults to WindowRange(-1, 3).
key_projection (bool, optional): whether the `Attention` Layer has a Linear Layer for the keys to pass through before computing attention. Defaults to True.
value_projection (bool, optional): whether the `Attention` Layer has a Linear Layer for the values to pass through before computing attention. Defaults to True.
"""
super(Attention, self).__init__()
std = np.sqrt(1 / query_dim)
self.query_proj = Linear(
query_dim, embed_dim, param_attr=I.Normal(scale=std))
if key_projection:
std = np.sqrt(1 / embed_dim)
self.key_proj = Linear(
embed_dim, embed_dim, param_attr=I.Normal(scale=std))
if value_projection:
std = np.sqrt(1 / embed_dim)
self.value_proj = Linear(
embed_dim, embed_dim, param_attr=I.Normal(scale=std))
std = np.sqrt(1 / embed_dim)
self.out_proj = Linear(
embed_dim, query_dim, param_attr=I.Normal(scale=std))
self.key_projection = key_projection
self.value_projection = value_projection
self.dropout = dropout
self.window_range = window_range
def forward(self, query, encoder_out, mask=None, last_attended=None):
"""
Compute contextualized representation and alignment scores.
Args:
query (Variable): shape(B, T_dec, C_q), dtype float32, the query tensor, where C_q means the query dim.
encoder_out (keys, values):
keys (Variable): shape(B, T_enc, C_emb), dtype float32, the key representation from an encoder, where C_emb means embed dim.
values (Variable): shape(B, T_enc, C_emb), dtype float32, the value representation from an encoder, where C_emb means embed dim.
mask (Variable, optional): shape(B, T_enc), dtype float32, mask generated with valid text lengths. Pad tokens corresponds to 1, and valid tokens correspond to 0.
last_attended (int, optional): The position that received the most attention at last time step. This is only used at inference.
Outpus:
x (Variable): shape(B, T_dec, C_q), dtype float32, the contextualized representation from attention mechanism.
attn_scores (Variable): shape(B, T_dec, T_enc), dtype float32, the alignment tensor, where T_dec means the number of decoder time steps and T_enc means number the number of decoder time steps.
"""
keys, values = encoder_out
residual = query
if self.value_projection:
values = self.value_proj(values)
if self.key_projection:
keys = self.key_proj(keys)
x = self.query_proj(query)
x = F.matmul(x, keys, transpose_y=True)
# mask generated by sentence length
neg_inf = -1.e30
if mask is not None:
neg_inf_mask = F.scale(F.unsqueeze(mask, [1]), neg_inf)
x += neg_inf_mask
# if last_attended is provided, focus only on a window range around it
# to enforce monotonic attention.
if last_attended is not None:
locality_mask = np.ones(shape=x.shape, dtype=np.float32)
backward, ahead = self.window_range
backward = last_attended + backward
ahead = last_attended + ahead
backward = max(backward, 0)
ahead = min(ahead, x.shape[-1])
locality_mask[:, :, backward:ahead] = 0.
locality_mask = dg.to_variable(locality_mask)
neg_inf_mask = F.scale(locality_mask, neg_inf)
x += neg_inf_mask
x = F.softmax(x)
attn_scores = x
x = F.dropout(
x, self.dropout, dropout_implementation="upscale_in_train")
x = F.matmul(x, values)
encoder_length = keys.shape[1]
x = F.scale(x, encoder_length * np.sqrt(1.0 / encoder_length))
x = self.out_proj(x)
x = F.scale((x + residual), np.sqrt(0.5))
return x, attn_scores