ParakeetEricRoss/parakeet/models/transformer_tts/post_convnet.py

138 lines
5.5 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from parakeet.modules.customized import Conv1D
class PostConvNet(dg.Layer):
def __init__(self,
n_mels=80,
num_hidden=512,
filter_size=5,
padding=0,
num_conv=5,
outputs_per_step=1,
use_cudnn=True,
dropout=0.1,
batchnorm_last=False):
"""Decocder post conv net of TransformerTTS.
Args:
n_mels (int, optional): the number of mel bands when calculating mel spectrograms. Defaults to 80.
num_hidden (int, optional): the size of hidden layer in network. Defaults to 512.
filter_size (int, optional): the filter size of Conv. Defaults to 5.
padding (int, optional): the padding size of Conv. Defaults to 0.
num_conv (int, optional): the num of Conv layers in network. Defaults to 5.
outputs_per_step (int, optional): the num of output frames per step . Defaults to 1.
use_cudnn (bool, optional): use cudnn in Conv or not. Defaults to True.
dropout (float, optional): dropout probability. Defaults to 0.1.
batchnorm_last (bool, optional): if batchnorm at last layer or not. Defaults to False.
"""
super(PostConvNet, self).__init__()
self.dropout = dropout
self.num_conv = num_conv
self.batchnorm_last = batchnorm_last
self.conv_list = []
k = math.sqrt(1.0 / (n_mels * outputs_per_step))
self.conv_list.append(
Conv1D(
num_channels=n_mels * outputs_per_step,
num_filters=num_hidden,
filter_size=filter_size,
padding=padding,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=-k, high=k)),
use_cudnn=use_cudnn))
k = math.sqrt(1.0 / num_hidden)
for _ in range(1, num_conv - 1):
self.conv_list.append(
Conv1D(
num_channels=num_hidden,
num_filters=num_hidden,
filter_size=filter_size,
padding=padding,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=-k, high=k)),
use_cudnn=use_cudnn))
self.conv_list.append(
Conv1D(
num_channels=num_hidden,
num_filters=n_mels * outputs_per_step,
filter_size=filter_size,
padding=padding,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=-k, high=k)),
use_cudnn=use_cudnn))
for i, layer in enumerate(self.conv_list):
self.add_sublayer("conv_list_{}".format(i), layer)
self.batch_norm_list = [
dg.BatchNorm(
num_hidden, data_layout='NCHW') for _ in range(num_conv - 1)
]
if self.batchnorm_last:
self.batch_norm_list.append(
dg.BatchNorm(
n_mels * outputs_per_step, data_layout='NCHW'))
for i, layer in enumerate(self.batch_norm_list):
self.add_sublayer("batch_norm_list_{}".format(i), layer)
def forward(self, input):
"""
Compute the mel spectrum.
Args:
input (Variable): shape(B, T, C), dtype float32, the result of mel linear projection.
Returns:
output (Variable): shape(B, T, C), the result after postconvnet.
"""
input = layers.transpose(input, [0, 2, 1])
len = input.shape[-1]
for i in range(self.num_conv - 1):
batch_norm = self.batch_norm_list[i]
conv = self.conv_list[i]
input = layers.dropout(
layers.tanh(batch_norm(conv(input)[:, :, :len])),
self.dropout,
dropout_implementation='upscale_in_train')
conv = self.conv_list[self.num_conv - 1]
input = conv(input)[:, :, :len]
if self.batchnorm_last:
batch_norm = self.batch_norm_list[self.num_conv - 1]
input = layers.dropout(
batch_norm(input),
self.dropout,
dropout_implementation='upscale_in_train')
output = layers.transpose(input, [0, 2, 1])
return output