164 lines
5.8 KiB
Python
164 lines
5.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import argparse
|
|
import os
|
|
import time
|
|
import math
|
|
from pathlib import Path
|
|
from pprint import pprint
|
|
from ruamel import yaml
|
|
from tqdm import tqdm
|
|
from matplotlib import cm
|
|
from collections import OrderedDict
|
|
from tensorboardX import SummaryWriter
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid as fluid
|
|
from parakeet.models.fastspeech.fastspeech import FastSpeech
|
|
from parakeet.models.fastspeech.utils import get_alignment
|
|
from data import LJSpeechLoader
|
|
from parakeet.utils import io
|
|
|
|
|
|
def add_config_options_to_parser(parser):
|
|
parser.add_argument("--config", type=str, help="path of the config file")
|
|
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
|
|
parser.add_argument("--data", type=str, help="path of LJspeech dataset")
|
|
parser.add_argument(
|
|
"--alignments_path", type=str, help="path of alignments")
|
|
|
|
g = parser.add_mutually_exclusive_group()
|
|
g.add_argument("--checkpoint", type=str, help="checkpoint to resume from")
|
|
g.add_argument(
|
|
"--iteration",
|
|
type=int,
|
|
help="the iteration of the checkpoint to load from output directory")
|
|
|
|
parser.add_argument(
|
|
"--output",
|
|
type=str,
|
|
default="experiment",
|
|
help="path to save experiment results")
|
|
|
|
|
|
def main(args):
|
|
local_rank = dg.parallel.Env().local_rank
|
|
nranks = dg.parallel.Env().nranks
|
|
parallel = nranks > 1
|
|
|
|
with open(args.config) as f:
|
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
|
|
|
global_step = 0
|
|
place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()
|
|
fluid.enable_dygraph(place)
|
|
|
|
if not os.path.exists(args.output):
|
|
os.mkdir(args.output)
|
|
|
|
writer = SummaryWriter(os.path.join(args.output,
|
|
'log')) if local_rank == 0 else None
|
|
|
|
model = FastSpeech(cfg['network'], num_mels=cfg['audio']['num_mels'])
|
|
model.train()
|
|
optimizer = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] *
|
|
(cfg['train']['learning_rate']**2)),
|
|
cfg['train']['warm_up_step']),
|
|
parameter_list=model.parameters(),
|
|
grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][
|
|
'grad_clip_thresh']))
|
|
reader = LJSpeechLoader(
|
|
cfg['audio'],
|
|
place,
|
|
args.data,
|
|
args.alignments_path,
|
|
cfg['train']['batch_size'],
|
|
nranks,
|
|
local_rank,
|
|
shuffle=True).reader()
|
|
|
|
# Load parameters.
|
|
global_step = io.load_parameters(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
checkpoint_dir=os.path.join(args.output, 'checkpoints'),
|
|
iteration=args.iteration,
|
|
checkpoint_path=args.checkpoint)
|
|
print("Rank {}: checkpoint loaded.".format(local_rank))
|
|
|
|
if parallel:
|
|
strategy = dg.parallel.prepare_context()
|
|
model = fluid.dygraph.parallel.DataParallel(model, strategy)
|
|
|
|
for epoch in range(cfg['train']['max_epochs']):
|
|
pbar = tqdm(reader)
|
|
|
|
for i, data in enumerate(pbar):
|
|
pbar.set_description('Processing at epoch %d' % epoch)
|
|
(character, mel, pos_text, pos_mel, alignment) = data
|
|
|
|
global_step += 1
|
|
|
|
#Forward
|
|
result = model(
|
|
character, pos_text, mel_pos=pos_mel, length_target=alignment)
|
|
mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
|
|
mel_loss = layers.mse_loss(mel_output, mel)
|
|
mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)
|
|
duration_loss = layers.mean(
|
|
layers.abs(
|
|
layers.elementwise_sub(duration_predictor_output,
|
|
alignment)))
|
|
total_loss = mel_loss + mel_postnet_loss + duration_loss
|
|
|
|
if local_rank == 0:
|
|
writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
|
|
writer.add_scalar('post_mel_loss',
|
|
mel_postnet_loss.numpy(), global_step)
|
|
writer.add_scalar('duration_loss',
|
|
duration_loss.numpy(), global_step)
|
|
writer.add_scalar('learning_rate',
|
|
optimizer._learning_rate.step().numpy(),
|
|
global_step)
|
|
|
|
if parallel:
|
|
total_loss = model.scale_loss(total_loss)
|
|
total_loss.backward()
|
|
model.apply_collective_grads()
|
|
else:
|
|
total_loss.backward()
|
|
optimizer.minimize(total_loss)
|
|
model.clear_gradients()
|
|
|
|
# save checkpoint
|
|
if local_rank == 0 and global_step % cfg['train'][
|
|
'checkpoint_interval'] == 0:
|
|
io.save_parameters(
|
|
os.path.join(args.output, 'checkpoints'), global_step,
|
|
model, optimizer)
|
|
|
|
if local_rank == 0:
|
|
writer.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description="Train Fastspeech model")
|
|
add_config_options_to_parser(parser)
|
|
args = parser.parse_args()
|
|
# Print the whole config setting.
|
|
pprint(vars(args))
|
|
main(args)
|