ParakeetEricRoss/parakeet/models/transformer_tts_deprecated/decoder.py

194 lines
7.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.models.transformer_tts.utils import *
from parakeet.modules.multihead_attention import MultiheadAttention
from parakeet.modules.ffn import PositionwiseFeedForward
from parakeet.models.transformer_tts.prenet import PreNet
from parakeet.models.transformer_tts.post_convnet import PostConvNet
class Decoder(dg.Layer):
def __init__(self,
num_hidden,
num_mels=80,
outputs_per_step=1,
num_head=4,
n_layers=3):
"""Decoder layer of TransformerTTS.
Args:
num_hidden (int): the number of source vocabulary.
n_mels (int, optional): the number of mel bands when calculating mel spectrograms. Defaults to 80.
outputs_per_step (int, optional): the num of output frames per step . Defaults to 1.
num_head (int, optional): the head number of multihead attention. Defaults to 4.
n_layers (int, optional): the layers number of multihead attention. Defaults to 3.
"""
super(Decoder, self).__init__()
self.num_hidden = num_hidden
self.num_head = num_head
param = fluid.ParamAttr()
self.alpha = self.create_parameter(
shape=(1, ),
attr=param,
dtype='float32',
default_initializer=fluid.initializer.ConstantInitializer(
value=1.0))
self.pos_inp = get_sinusoid_encoding_table(
1024, self.num_hidden, padding_idx=0)
self.pos_emb = dg.Embedding(
size=[1024, num_hidden],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
self.pos_inp),
trainable=False))
self.decoder_prenet = PreNet(
input_size=num_mels,
hidden_size=num_hidden * 2,
output_size=num_hidden,
dropout_rate=0.2)
k = math.sqrt(1.0 / num_hidden)
self.linear = dg.Linear(
num_hidden,
num_hidden,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k)))
self.selfattn_layers = [
MultiheadAttention(num_hidden, num_hidden // num_head,
num_hidden // num_head) for _ in range(n_layers)
]
for i, layer in enumerate(self.selfattn_layers):
self.add_sublayer("self_attn_{}".format(i), layer)
self.attn_layers = [
MultiheadAttention(num_hidden, num_hidden // num_head,
num_hidden // num_head) for _ in range(n_layers)
]
for i, layer in enumerate(self.attn_layers):
self.add_sublayer("attn_{}".format(i), layer)
self.ffns = [
PositionwiseFeedForward(
num_hidden, num_hidden * num_head, filter_size=1)
for _ in range(n_layers)
]
for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer)
self.mel_linear = dg.Linear(
num_hidden,
num_mels * outputs_per_step,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k)))
self.stop_linear = dg.Linear(
num_hidden,
1,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
low=-k, high=k)))
self.postconvnet = PostConvNet(
num_mels,
num_hidden,
filter_size=5,
padding=4,
num_conv=5,
outputs_per_step=outputs_per_step,
use_cudnn=True)
def forward(self, key, value, query, positional, c_mask):
"""
Compute decoder outputs.
Args:
key (Variable): shape(B, T_text, C), dtype float32, the input key of decoder,
where T_text means the timesteps of input text,
value (Variable): shape(B, T_text, C), dtype float32, the input value of decoder.
query (Variable): shape(B, T_mel, C), dtype float32, the input query of decoder,
where T_mel means the timesteps of input spectrum,
positional (Variable): shape(B, T_mel), dtype int64, the spectrum position.
c_mask (Variable): shape(B, T_text, 1), dtype float32, query mask returned from encoder.
Returns:
mel_out (Variable): shape(B, T_mel, C), the decoder output after mel linear projection.
out (Variable): shape(B, T_mel, C), the decoder output after post mel network.
stop_tokens (Variable): shape(B, T_mel, 1), the stop tokens of output.
attn_list (list[Variable]): len(n_layers), the encoder-decoder attention list.
selfattn_list (list[Variable]): len(n_layers), the decoder self attention list.
"""
# get decoder mask with triangular matrix
if fluid.framework._dygraph_tracer()._train_mode:
mask = get_dec_attn_key_pad_mask(positional, self.num_head,
query.dtype)
m_mask = get_non_pad_mask(positional, self.num_head, query.dtype)
zero_mask = layers.cast(c_mask == 0, dtype=query.dtype) * -1e30
zero_mask = layers.transpose(zero_mask, perm=[0, 2, 1])
else:
len_q = query.shape[1]
mask = layers.triu(
layers.ones(
shape=[len_q, len_q], dtype=query.dtype),
diagonal=1)
mask = layers.cast(mask != 0, dtype=query.dtype) * -1e30
m_mask, zero_mask = None, None
# Decoder pre-network
query = self.decoder_prenet(query)
# Centered position
query = self.linear(query)
# Get position embedding
positional = self.pos_emb(positional)
query = positional * self.alpha + query
#positional dropout
query = fluid.layers.dropout(
query, 0.1, dropout_implementation='upscale_in_train')
# Attention decoder-decoder, encoder-decoder
selfattn_list = list()
attn_list = list()
for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers,
self.ffns):
query, attn_dec = selfattn(
query, query, query, mask=mask, query_mask=m_mask)
query, attn_dot = attn(
key, value, query, mask=zero_mask, query_mask=m_mask)
query = ffn(query)
selfattn_list.append(attn_dec)
attn_list.append(attn_dot)
# Mel linear projection
mel_out = self.mel_linear(query)
# Post Mel Network
out = self.postconvnet(mel_out)
out = mel_out + out
# Stop tokens
stop_tokens = self.stop_linear(query)
stop_tokens = layers.squeeze(stop_tokens, [-1])
stop_tokens = layers.sigmoid(stop_tokens)
return mel_out, out, attn_list, stop_tokens, selfattn_list