46 lines
1.3 KiB
Python
46 lines
1.3 KiB
Python
import math
|
|
import numpy as np
|
|
import paddle
|
|
from paddle.nn import functional as F
|
|
|
|
__all__ = ["positional_encoding"]
|
|
|
|
def positional_encoding(start_index, length, size, dtype=None):
|
|
r"""Generate standard positional encoding matrix.
|
|
|
|
.. math::
|
|
|
|
pe(pos, 2i) = sin(\frac{pos}{10000^{\frac{2i}{size}}}) \\
|
|
pe(pos, 2i+1) = cos(\frac{pos}{10000^{\frac{2i}{size}}})
|
|
|
|
Parameters
|
|
----------
|
|
start_index : int
|
|
The start index.
|
|
length : int
|
|
The timesteps of the positional encoding to generate.
|
|
size : int
|
|
Feature size of positional encoding.
|
|
|
|
Returns
|
|
-------
|
|
Tensor [shape=(length, size)]
|
|
The positional encoding.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If ``size`` is not divisible by 2.
|
|
"""
|
|
if (size % 2 != 0):
|
|
raise ValueError("size should be divisible by 2")
|
|
dtype = dtype or paddle.get_default_dtype()
|
|
channel = np.arange(0, size, 2)
|
|
index = np.arange(start_index, start_index + length, 1)
|
|
p = np.expand_dims(index, -1) / (10000 ** (channel / float(size)))
|
|
encodings = np.zeros([length, size])
|
|
encodings[:, 0::2] = np.sin(p)
|
|
encodings[:, 1::2] = np.cos(p)
|
|
encodings = paddle.to_tensor(encodings)
|
|
return encodings
|