81 lines
3.2 KiB
Python
81 lines
3.2 KiB
Python
from pathlib import Path
|
|
import pandas as pd
|
|
from ruamel.yaml import YAML
|
|
import io
|
|
|
|
import librosa
|
|
import numpy as np
|
|
|
|
from parakeet.g2p.en import text_to_sequence
|
|
from parakeet.data.dataset import Dataset
|
|
from parakeet.data.datacargo import DataCargo
|
|
from parakeet.data.batch import TextIDBatcher, WavBatcher
|
|
|
|
class VCTK(Dataset):
|
|
def __init__(self, root):
|
|
assert isinstance(root, (str, Path)), "root should be a string or Path object"
|
|
self.root = root if isinstance(root, Path) else Path(root)
|
|
self.text_root = self.root.joinpath("txt")
|
|
self.wav_root = self.root.joinpath("wav48")
|
|
|
|
if not (self.root.joinpath("metadata.csv").exists() and
|
|
self.root.joinpath("speaker_indices.yaml").exists()):
|
|
self._prepare_metadata()
|
|
self.speaker_indices, self.metadata = self._load_metadata()
|
|
|
|
def _load_metadata(self):
|
|
yaml=YAML(typ='safe')
|
|
speaker_indices = yaml.load(self.root.joinpath("speaker_indices.yaml"))
|
|
metadata = pd.read_csv(self.root.joinpath("metadata.csv"),
|
|
sep="|", quoting=3, header=1)
|
|
return speaker_indices, metadata
|
|
|
|
def _prepare_metadata(self):
|
|
metadata = []
|
|
speaker_to_index = {}
|
|
for i, speaker_folder in enumerate(self.text_root.iterdir()):
|
|
if speaker_folder.is_dir():
|
|
speaker_to_index[speaker_folder.name] = i
|
|
for text_file in speaker_folder.iterdir():
|
|
if text_file.is_file():
|
|
with io.open(str(text_file)) as f:
|
|
transcription = f.read().strip()
|
|
wav_file = text_file.with_suffix(".wav")
|
|
metadata.append((wav_file.name, speaker_folder.name, transcription))
|
|
metadata = pd.DataFrame.from_records(metadata,
|
|
columns=["wave_file", "speaker", "text"])
|
|
|
|
# save them
|
|
yaml=YAML(typ='safe')
|
|
yaml.dump(speaker_to_index, self.root.joinpath("speaker_indices.yaml"))
|
|
metadata.to_csv(self.root.joinpath("metadata.csv"),
|
|
sep="|", quoting=3, index=False)
|
|
|
|
def _get_example(self, metadatum):
|
|
wave_file, speaker, text = metadatum
|
|
wav_path = self.wav_root.joinpath(speaker, wave_file)
|
|
wav, sr = librosa.load(str(wav_path), sr=None)
|
|
phoneme_seq = np.array(text_to_sequence(text))
|
|
return wav, self.speaker_indices[speaker], phoneme_seq
|
|
|
|
def __getitem__(self, index):
|
|
metadatum = self.metadata.iloc[index]
|
|
example = self._get_example(metadatum)
|
|
return example
|
|
|
|
def __len__(self):
|
|
return len(self.metadata)
|
|
|
|
def _batch_examples(self, minibatch):
|
|
wav_batch, speaker_batch, phoneme_batch = [], [], []
|
|
for example in minibatch:
|
|
wav, speaker_id, phoneme_seq = example
|
|
wav_batch.append(wav)
|
|
speaker_batch.append(speaker_id)
|
|
phoneme_batch.append(phoneme_seq)
|
|
wav_batch = WavBatcher(pad_value=0.)(wav_batch)
|
|
speaker_batch = np.array(speaker_batch)
|
|
phoneme_batch = TextIDBatcher(pad_id=0)(phoneme_batch)
|
|
return wav_batch, speaker_batch, phoneme_batch
|
|
|
|
|