ParakeetEricRoss/parakeet/datasets/vctk.py

81 lines
3.2 KiB
Python

from pathlib import Path
import pandas as pd
from ruamel.yaml import YAML
import io
import librosa
import numpy as np
from parakeet.g2p.en import text_to_sequence
from parakeet.data.dataset import Dataset
from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, WavBatcher
class VCTK(Dataset):
def __init__(self, root):
assert isinstance(root, (str, Path)), "root should be a string or Path object"
self.root = root if isinstance(root, Path) else Path(root)
self.text_root = self.root.joinpath("txt")
self.wav_root = self.root.joinpath("wav48")
if not (self.root.joinpath("metadata.csv").exists() and
self.root.joinpath("speaker_indices.yaml").exists()):
self._prepare_metadata()
self.speaker_indices, self.metadata = self._load_metadata()
def _load_metadata(self):
yaml=YAML(typ='safe')
speaker_indices = yaml.load(self.root.joinpath("speaker_indices.yaml"))
metadata = pd.read_csv(self.root.joinpath("metadata.csv"),
sep="|", quoting=3, header=1)
return speaker_indices, metadata
def _prepare_metadata(self):
metadata = []
speaker_to_index = {}
for i, speaker_folder in enumerate(self.text_root.iterdir()):
if speaker_folder.is_dir():
speaker_to_index[speaker_folder.name] = i
for text_file in speaker_folder.iterdir():
if text_file.is_file():
with io.open(str(text_file)) as f:
transcription = f.read().strip()
wav_file = text_file.with_suffix(".wav")
metadata.append((wav_file.name, speaker_folder.name, transcription))
metadata = pd.DataFrame.from_records(metadata,
columns=["wave_file", "speaker", "text"])
# save them
yaml=YAML(typ='safe')
yaml.dump(speaker_to_index, self.root.joinpath("speaker_indices.yaml"))
metadata.to_csv(self.root.joinpath("metadata.csv"),
sep="|", quoting=3, index=False)
def _get_example(self, metadatum):
wave_file, speaker, text = metadatum
wav_path = self.wav_root.joinpath(speaker, wave_file)
wav, sr = librosa.load(str(wav_path), sr=None)
phoneme_seq = np.array(text_to_sequence(text))
return wav, self.speaker_indices[speaker], phoneme_seq
def __getitem__(self, index):
metadatum = self.metadata.iloc[index]
example = self._get_example(metadatum)
return example
def __len__(self):
return len(self.metadata)
def _batch_examples(self, minibatch):
wav_batch, speaker_batch, phoneme_batch = [], [], []
for example in minibatch:
wav, speaker_id, phoneme_seq = example
wav_batch.append(wav)
speaker_batch.append(speaker_id)
phoneme_batch.append(phoneme_seq)
wav_batch = WavBatcher(pad_value=0.)(wav_batch)
speaker_batch = np.array(speaker_batch)
phoneme_batch = TextIDBatcher(pad_id=0)(phoneme_batch)
return wav_batch, speaker_batch, phoneme_batch