ParakeetEricRoss/parakeet/models/deepvoice3/model.py

50 lines
1.9 KiB
Python

import numpy as np
import paddle.fluid.layers as F
import paddle.fluid.initializer as I
import paddle.fluid.dygraph as dg
class DeepVoice3(dg.Layer):
def __init__(self, encoder, decoder, converter, speaker_embedding,
use_decoder_states):
super(DeepVoice3, self).__init__()
if speaker_embedding is None:
self.n_speakers = 1
else:
self.speaker_embedding = speaker_embedding
self.encoder = encoder
self.decoder = decoder
self.converter = converter
self.use_decoder_states = use_decoder_states
def forward(self, text_sequences, text_positions, valid_lengths,
speaker_indices, mel_inputs, frame_positions):
if hasattr(self, "speaker_embedding"):
speaker_embed = self.speaker_embedding(speaker_indices)
else:
speaker_embed = None
keys, values = self.encoder(text_sequences, speaker_embed)
mel_outputs, alignments, done, decoder_states = self.decoder(
(keys, values), valid_lengths, mel_inputs, text_positions,
frame_positions, speaker_embed)
linear_outputs = self.converter(
decoder_states if self.use_decoder_states else mel_outputs,
speaker_embed)
return mel_outputs, linear_outputs, alignments, done
def transduce(self, text_sequences, text_positions, speaker_indices=None):
if hasattr(self, "speaker_embedding"):
speaker_embed = self.speaker_embedding(speaker_indices)
else:
speaker_embed = None
keys, values = self.encoder(text_sequences, speaker_embed)
mel_outputs, alignments, done, decoder_states = self.decoder.decode(
(keys, values), text_positions, speaker_embed)
linear_outputs = self.converter(
decoder_states if self.use_decoder_states else mel_outputs,
speaker_embed)
return mel_outputs, linear_outputs, alignments, done