ParakeetEricRoss/parakeet/modules/multihead_attention.py

138 lines
6.0 KiB
Python

import math
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
class Linear(dg.Layer):
def __init__(self, in_features, out_features, is_bias=True, dtype="float32"):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dtype = dtype
self.weight = fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer())
self.bias = is_bias
if is_bias is not False:
k = math.sqrt(1 / in_features)
self.bias = fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k))
self.linear = dg.Linear(in_features, out_features, param_attr = self.weight,
bias_attr = self.bias,)
def forward(self, x):
x = self.linear(x)
return x
class ScaledDotProductAttention(dg.Layer):
def __init__(self, d_key):
super(ScaledDotProductAttention, self).__init__()
self.d_key = d_key
# please attention this mask is diff from pytorch
def forward(self, key, value, query, mask=None, query_mask=None, dropout=0.1):
"""
Scaled Dot Product Attention.
Args:
key (Variable): Shape(B, T, C), dtype: float32. The input key of attention.
value (Variable): Shape(B, T, C), dtype: float32. The input value of attention.
query (Variable): Shape(B, T, C), dtype: float32. The input query of attention.
mask (Variable): Shape(B, len_q, len_k), dtype: float32. The mask of key.
query_mask (Variable): Shape(B, len_q, 1), dtype: float32. The mask of query.
dropout (Constant): dtype: float32. The probability of dropout.
Returns:
result (Variable), Shape(B, T, C), the result of mutihead attention.
attention (Variable), Shape(n_head * B, T, C), the attention of key.
"""
# Compute attention score
attention = layers.matmul(query, key, transpose_y=True) #transpose the last dim in y
attention = attention / math.sqrt(self.d_key)
# Mask key to ignore padding
if mask is not None:
attention = attention * mask
mask = (mask == 0).astype(np.float32) * (-2 ** 32 + 1)
attention = attention + mask
attention = layers.softmax(attention)
attention = layers.dropout(attention, dropout)
# Mask query to ignore padding
if query_mask is not None:
attention = attention * query_mask
result = layers.matmul(attention, value)
return result, attention
class MultiheadAttention(dg.Layer):
def __init__(self, num_hidden, d_k, d_q, num_head=4, is_bias=False, dropout=0.1, is_concat=True):
super(MultiheadAttention, self).__init__()
self.num_hidden = num_hidden
self.num_head = num_head
self.d_k = d_k
self.d_q = d_q
self.dropout = dropout
self.is_concat = is_concat
self.key = Linear(num_hidden, num_head * d_k, is_bias=is_bias)
self.value = Linear(num_hidden, num_head * d_k, is_bias=is_bias)
self.query = Linear(num_hidden, num_head * d_q, is_bias=is_bias)
self.scal_attn = ScaledDotProductAttention(d_k)
if self.is_concat:
self.fc = Linear(num_head * d_q * 2, num_hidden)
else:
self.fc = Linear(num_head * d_q, num_hidden)
self.layer_norm = dg.LayerNorm(num_hidden)
def forward(self, key, value, query_input, mask=None, query_mask=None):
"""
Multihead Attention.
Args:
key (Variable): Shape(B, T, C), dtype: float32. The input key of attention.
value (Variable): Shape(B, T, C), dtype: float32. The input value of attention.
query_input (Variable): Shape(B, T, C), dtype: float32. The input query of attention.
mask (Variable): Shape(B, len_q, len_k), dtype: float32. The mask of key.
query_mask (Variable): Shape(B, len_q, 1), dtype: float32. The mask of query.
Returns:
result (Variable), Shape(B, T, C), the result of mutihead attention.
attention (Variable), Shape(n_head * B, T, C), the attention of key.
"""
batch_size = key.shape[0]
seq_len_key = key.shape[1]
seq_len_query = query_input.shape[1]
# repeat masks h times
if query_mask is not None:
query_mask = layers.expand(query_mask, [self.num_head, 1, seq_len_key])
if mask is not None:
mask = layers.expand(mask, (self.num_head, 1, 1))
# Make multihead attention
# key & value.shape = (batch_size, seq_len, feature)(feature = num_head * num_hidden_per_attn)
key = layers.reshape(self.key(key), [batch_size, seq_len_key, self.num_head, self.d_k])
value = layers.reshape(self.value(value), [batch_size, seq_len_key, self.num_head, self.d_k])
query = layers.reshape(self.query(query_input), [batch_size, seq_len_query, self.num_head, self.d_q])
key = layers.reshape(layers.transpose(key, [2, 0, 1, 3]), [-1, seq_len_key, self.d_k])
value = layers.reshape(layers.transpose(value, [2, 0, 1, 3]), [-1, seq_len_key, self.d_k])
query = layers.reshape(layers.transpose(query, [2, 0, 1, 3]), [-1, seq_len_query, self.d_q])
result, attention = self.scal_attn(key, value, query, mask=mask, query_mask=query_mask)
# concat all multihead result
result = layers.reshape(result, [self.num_head, batch_size, seq_len_query, self.d_q])
result = layers.reshape(layers.transpose(result, [1,2,0,3]),[batch_size, seq_len_query, -1])
if self.is_concat:
result = layers.concat([query_input,result], axis=-1)
result = layers.dropout(self.fc(result), self.dropout)
result = result + query_input
result = self.layer_norm(result)
return result, attention