ParakeetEricRoss/parakeet/models/transformer_tts/cbhg.py

195 lines
8.9 KiB
Python

import math
from parakeet.g2p.text.symbols import symbols
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from parakeet.modules.customized import Pool1D, Conv1D
from parakeet.modules.dynamic_gru import DynamicGRU
import numpy as np
class CBHG(dg.Layer):
def __init__(self, hidden_size, batch_size, K=16, projection_size = 256, num_gru_layers=2,
max_pool_kernel_size=2, is_post=False):
super(CBHG, self).__init__()
"""
:param hidden_size: dimension of hidden unit
:param batch_size: batch size
:param K: # of convolution banks
:param projection_size: dimension of projection unit
:param num_gru_layers: # of layers of GRUcell
:param max_pool_kernel_size: max pooling kernel size
:param is_post: whether post processing or not
"""
self.hidden_size = hidden_size
self.projection_size = projection_size
self.conv_list = []
k = math.sqrt(1 / projection_size)
self.conv_list.append(Conv1D(num_channels = projection_size,
num_filters = hidden_size,
filter_size = 1,
padding = int(np.floor(1/2)),
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k))))
k = math.sqrt(1 / hidden_size)
for i in range(2,K+1):
self.conv_list.append(Conv1D(num_channels = hidden_size,
num_filters = hidden_size,
filter_size = i,
padding = int(np.floor(i/2)),
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k))))
for i, layer in enumerate(self.conv_list):
self.add_sublayer("conv_list_{}".format(i), layer)
self.batchnorm_list = []
for i in range(K):
self.batchnorm_list.append(dg.BatchNorm(hidden_size,
data_layout='NCHW'))
for i, layer in enumerate(self.batchnorm_list):
self.add_sublayer("batchnorm_list_{}".format(i), layer)
conv_outdim = hidden_size * K
k = math.sqrt(1 / conv_outdim)
self.conv_projection_1 = Conv1D(num_channels = conv_outdim,
num_filters = hidden_size,
filter_size = 3,
padding = int(np.floor(3/2)),
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k)))
k = math.sqrt(1 / hidden_size)
self.conv_projection_2 = Conv1D(num_channels = hidden_size,
num_filters = projection_size,
filter_size = 3,
padding = int(np.floor(3/2)),
param_attr = fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Uniform(low=-k, high=k)))
self.batchnorm_proj_1 = dg.BatchNorm(hidden_size,
data_layout='NCHW')
self.batchnorm_proj_2 = dg.BatchNorm(projection_size,
data_layout='NCHW')
self.max_pool = Pool1D(pool_size = max_pool_kernel_size,
pool_type='max',
pool_stride=1,
pool_padding=1,
data_format = "NCT")
self.highway = Highwaynet(self.projection_size)
h_0 = np.zeros((batch_size, hidden_size // 2), dtype="float32")
h_0 = dg.to_variable(h_0)
k = math.sqrt(1 / hidden_size)
self.fc_forward1 = dg.Linear(hidden_size, hidden_size // 2 * 3,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
self.fc_reverse1 = dg.Linear(hidden_size, hidden_size // 2 * 3,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
self.gru_forward1 = DynamicGRU(size = self.hidden_size // 2,
is_reverse = False,
origin_mode = True,
h_0 = h_0)
self.gru_reverse1 = DynamicGRU(size = self.hidden_size // 2,
is_reverse=True,
origin_mode=True,
h_0 = h_0)
self.fc_forward2 = dg.Linear(hidden_size, hidden_size // 2 * 3,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
self.fc_reverse2 = dg.Linear(hidden_size, hidden_size // 2 * 3,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)))
self.gru_forward2 = DynamicGRU(size = self.hidden_size // 2,
is_reverse = False,
origin_mode = True,
h_0 = h_0)
self.gru_reverse2 = DynamicGRU(size = self.hidden_size // 2,
is_reverse=True,
origin_mode=True,
h_0 = h_0)
def _conv_fit_dim(self, x, filter_size=3):
if filter_size % 2 == 0:
return x[:,:,:-1]
else:
return x
def forward(self, input_):
# input_.shape = [N, C, T]
conv_list = []
conv_input = input_
for i, (conv, batchnorm) in enumerate(zip(self.conv_list, self.batchnorm_list)):
conv_input = self._conv_fit_dim(conv(conv_input), i+1)
conv_input = layers.relu(batchnorm(conv_input))
conv_list.append(conv_input)
conv_cat = layers.concat(conv_list, axis=1)
conv_pool = self.max_pool(conv_cat)[:,:,:-1]
conv_proj = layers.relu(self.batchnorm_proj_1(self._conv_fit_dim(self.conv_projection_1(conv_pool))))
conv_proj = self.batchnorm_proj_2(self._conv_fit_dim(self.conv_projection_2(conv_proj))) + input_
# conv_proj.shape = [N, C, T]
highway = layers.transpose(conv_proj, [0,2,1])
highway = self.highway(highway)
# highway.shape = [N, T, C]
fc_forward = self.fc_forward1(highway)
fc_reverse = self.fc_reverse1(highway)
out_forward = self.gru_forward1(fc_forward)
out_reverse = self.gru_reverse1(fc_reverse)
out = layers.concat([out_forward, out_reverse], axis=-1)
fc_forward = self.fc_forward2(out)
fc_reverse = self.fc_reverse2(out)
out_forward = self.gru_forward2(fc_forward)
out_reverse = self.gru_reverse2(fc_reverse)
out = layers.concat([out_forward, out_reverse], axis=-1)
out = layers.transpose(out, [0,2,1])
return out
class Highwaynet(dg.Layer):
def __init__(self, num_units, num_layers=4):
super(Highwaynet, self).__init__()
self.num_units = num_units
self.num_layers = num_layers
self.gates = []
self.linears = []
k = math.sqrt(1 / num_units)
for i in range(num_layers):
self.linears.append(dg.Linear(num_units, num_units,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k))))
self.gates.append(dg.Linear(num_units, num_units,
param_attr=fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()),
bias_attr=fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k))))
for i, (linear, gate) in enumerate(zip(self.linears,self.gates)):
self.add_sublayer("linears_{}".format(i), linear)
self.add_sublayer("gates_{}".format(i), gate)
def forward(self, input_):
out = input_
for linear, gate in zip(self.linears, self.gates):
h = fluid.layers.relu(linear(out))
t_ = fluid.layers.sigmoid(gate(out))
c = 1 - t_
out = h * t_ + out * c
return out