ParakeetEricRoss/parakeet/modules/stft.py

94 lines
3.6 KiB
Python

import paddle
from paddle import nn
from paddle.nn import functional as F
from scipy import signal
import numpy as np
class STFT(nn.Layer):
def __init__(self, n_fft, hop_length, win_length, window="hanning"):
"""A module for computing differentiable stft transform. See `librosa.stft` for more details.
Args:
n_fft (int): number of samples in a frame.
hop_length (int): number of samples shifted between adjacent frames.
win_length (int): length of the window function.
window (str, optional): name of window function, see `scipy.signal.get_window` for more details. Defaults to "hanning".
"""
super(STFT, self).__init__()
self.hop_length = hop_length
self.n_bin = 1 + n_fft // 2
self.n_fft = n_fft
# calculate window
window = signal.get_window(window, win_length)
if n_fft != win_length:
pad = (n_fft - win_length) // 2
window = np.pad(window, ((pad, pad), ), 'constant')
# calculate weights
r = np.arange(0, n_fft)
M = np.expand_dims(r, -1) * np.expand_dims(r, 0)
w_real = np.reshape(window *
np.cos(2 * np.pi * M / n_fft)[:self.n_bin],
(self.n_bin, 1, 1, self.n_fft))
w_imag = np.reshape(window *
np.sin(-2 * np.pi * M / n_fft)[:self.n_bin],
(self.n_bin, 1, 1, self.n_fft))
w = np.concatenate([w_real, w_imag], axis=0)
self.weight = paddle.cast(paddle.to_tensor(w), paddle.get_default_dtype())
def forward(self, x):
"""Compute the stft transform.
Args:
x (Variable): shape(B, T), dtype flaot32, the input waveform.
Returns:
(real, imag)
real (Variable): shape(B, C, 1, T), dtype flaot32, the real part of the spectrogram. (C = 1 + n_fft // 2)
imag (Variable): shape(B, C, 1, T), dtype flaot32, the image part of the spectrogram. (C = 1 + n_fft // 2)
"""
# x(batch_size, time_steps)
# pad it first with reflect mode
# TODO(chenfeiyu): report an issue on paddle.flip
pad_start = paddle.reverse(x[:, 1:1 + self.n_fft // 2], axis=[1])
pad_stop = paddle.reverse(x[:, -(1 + self.n_fft // 2):-1], axis=[1])
x = paddle.concat([pad_start, x, pad_stop], axis=-1)
# to BC1T, C=1
x = paddle.unsqueeze(x, axis=[1, 2])
out = F.conv2d(x, self.weight, stride=(1, self.hop_length))
real, imag = paddle.chunk(out, 2, axis=1) # BC1T
return real, imag
def power(self, x):
"""Compute the power spectrogram.
Args:
(real, imag)
real (Variable): shape(B, C, 1, T), dtype flaot32, the real part of the spectrogram.
imag (Variable): shape(B, C, 1, T), dtype flaot32, the image part of the spectrogram.
Returns:
Variable: shape(B, C, 1, T), dtype flaot32, the power spectrogram.
"""
real, imag = self(x)
power = real**2 + imag**2
return power
def magnitude(self, x):
"""Compute the magnitude spectrogram.
Args:
(real, imag)
real (Variable): shape(B, C, 1, T), dtype flaot32, the real part of the spectrogram.
imag (Variable): shape(B, C, 1, T), dtype flaot32, the image part of the spectrogram.
Returns:
Variable: shape(B, C, 1, T), dtype flaot32, the magnitude spectrogram. It is the square root of the power spectrogram.
"""
power = self.power(x)
magnitude = paddle.sqrt(power)
return magnitude