ParakeetEricRoss/parakeet/modules/audio.py

192 lines
5.7 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from paddle.nn import functional as F
from scipy import signal
import numpy as np
__all__ = ["quantize", "dequantize", "STFT"]
def quantize(values, n_bands):
"""Linearlly quantize a float Tensor in [-1, 1) to an interger Tensor in
[0, n_bands).
Parameters
-----------
values : Tensor [dtype: flaot32 or float64]
The floating point value.
n_bands : int
The number of bands. The output integer Tensor's value is in the range
[0, n_bans).
Returns
----------
Tensor [dtype: int 64]
The quantized tensor.
"""
quantized = paddle.cast((values + 1.0) / 2.0 * n_bands, "int64")
return quantized
def dequantize(quantized, n_bands, dtype=None):
"""Linearlly dequantize an integer Tensor into a float Tensor in the range
[-1, 1).
Parameters
-----------
quantized : Tensor [dtype: int]
The quantized value in the range [0, n_bands).
n_bands : int
Number of bands. The input integer Tensor's value is in the range
[0, n_bans).
dtype : str, optional
Data type of the output.
Returns
-----------
Tensor
The dequantized tensor, dtype is specified by `dtype`. If `dtype` is
not specified, the default float data type is used.
"""
dtype = dtype or paddle.get_default_dtype()
value = (paddle.cast(quantized, dtype) + 0.5) * (2.0 / n_bands) - 1.0
return value
class STFT(nn.Layer):
"""A module for computing stft transformation in a differentiable way.
Parameters
------------
n_fft : int
Number of samples in a frame.
hop_length : int
Number of samples shifted between adjacent frames.
win_length : int
Length of the window.
window : str, optional
Name of window function, see `scipy.signal.get_window` for more
details. Defaults to "hanning".
Notes
-----------
It behaves like ``librosa.core.stft``. See ``librosa.core.stft`` for more
details.
Given a audio which ``T`` samples, it the STFT transformation outputs a
spectrum with (C, frames) and complex dtype, where ``C = 1 + n_fft / 2``
and ``frames = 1 + T // hop_lenghth``.
Ony ``center`` and ``reflect`` padding is supported now.
"""
def __init__(self, n_fft, hop_length, win_length, window="hanning"):
super(STFT, self).__init__()
self.hop_length = hop_length
self.n_bin = 1 + n_fft // 2
self.n_fft = n_fft
# calculate window
window = signal.get_window(window, win_length)
if n_fft != win_length:
pad = (n_fft - win_length) // 2
window = np.pad(window, ((pad, pad), ), 'constant')
# calculate weights
r = np.arange(0, n_fft)
M = np.expand_dims(r, -1) * np.expand_dims(r, 0)
w_real = np.reshape(window *
np.cos(2 * np.pi * M / n_fft)[:self.n_bin],
(self.n_bin, 1, 1, self.n_fft))
w_imag = np.reshape(window *
np.sin(-2 * np.pi * M / n_fft)[:self.n_bin],
(self.n_bin, 1, 1, self.n_fft))
w = np.concatenate([w_real, w_imag], axis=0)
self.weight = paddle.cast(
paddle.to_tensor(w), paddle.get_default_dtype())
def forward(self, x):
"""Compute the stft transform.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
real : Tensor [shape=(B, C, 1, frames)]
The real part of the spectrogram.
imag : Tensor [shape=(B, C, 1, frames)]
The image part of the spectrogram.
"""
# x(batch_size, time_steps)
# pad it first with reflect mode
# TODO(chenfeiyu): report an issue on paddle.flip
pad_start = paddle.reverse(x[:, 1:1 + self.n_fft // 2], axis=[1])
pad_stop = paddle.reverse(x[:, -(1 + self.n_fft // 2):-1], axis=[1])
x = paddle.concat([pad_start, x, pad_stop], axis=-1)
# to BC1T, C=1
x = paddle.unsqueeze(x, axis=[1, 2])
out = F.conv2d(x, self.weight, stride=(1, self.hop_length))
real, imag = paddle.chunk(out, 2, axis=1) # BC1T
return real, imag
def power(self, x):
"""Compute the power spectrum.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
Tensor [shape=(B, C, 1, T)]
The power spectrum.
"""
real, imag = self(x)
power = real**2 + imag**2
return power
def magnitude(self, x):
"""Compute the magnitude of the spectrum.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
Tensor [shape=(B, C, 1, T)]
The magnitude of the spectrum.
"""
power = self.power(x)
magnitude = paddle.sqrt(power)
return magnitude