2021-05-13 17:49:50 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import time
|
|
|
|
from pathlib import Path
|
|
|
|
from collections import defaultdict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import distributed as dist
|
|
|
|
from paddle.io import DataLoader, DistributedBatchSampler
|
|
|
|
|
|
|
|
from parakeet.data import dataset
|
|
|
|
from parakeet.training.cli import default_argument_parser
|
|
|
|
from parakeet.training.experiment import ExperimentBase
|
|
|
|
from parakeet.utils import display, mp_tools
|
|
|
|
from parakeet.models.tacotron2 import Tacotron2, Tacotron2Loss
|
|
|
|
|
|
|
|
from config import get_cfg_defaults
|
|
|
|
from aishell3 import AiShell3, collate_aishell3_examples
|
|
|
|
|
|
|
|
|
|
|
|
class Experiment(ExperimentBase):
|
|
|
|
def compute_losses(self, inputs, outputs):
|
|
|
|
texts, tones, mel_targets, utterance_embeds, text_lens, output_lens, stop_tokens = inputs
|
|
|
|
|
|
|
|
mel_outputs = outputs["mel_output"]
|
|
|
|
mel_outputs_postnet = outputs["mel_outputs_postnet"]
|
|
|
|
alignments = outputs["alignments"]
|
|
|
|
|
|
|
|
losses = self.criterion(mel_outputs, mel_outputs_postnet, mel_targets,
|
|
|
|
alignments, output_lens, text_lens)
|
|
|
|
return losses
|
|
|
|
|
|
|
|
def train_batch(self):
|
|
|
|
start = time.time()
|
|
|
|
batch = self.read_batch()
|
|
|
|
data_loader_time = time.time() - start
|
|
|
|
|
|
|
|
self.optimizer.clear_grad()
|
|
|
|
self.model.train()
|
|
|
|
texts, tones, mels, utterance_embeds, text_lens, output_lens, stop_tokens = batch
|
|
|
|
outputs = self.model(
|
|
|
|
texts,
|
|
|
|
text_lens,
|
|
|
|
mels,
|
|
|
|
output_lens,
|
|
|
|
tones=tones,
|
|
|
|
global_condition=utterance_embeds)
|
|
|
|
losses = self.compute_losses(batch, outputs)
|
|
|
|
loss = losses["loss"]
|
|
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
|
|
iteration_time = time.time() - start
|
|
|
|
|
|
|
|
losses_np = {k: float(v) for k, v in losses.items()}
|
|
|
|
# logging
|
|
|
|
msg = "Rank: {}, ".format(dist.get_rank())
|
|
|
|
msg += "step: {}, ".format(self.iteration)
|
|
|
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
|
|
|
iteration_time)
|
|
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_np.items())
|
|
|
|
self.logger.info(msg)
|
|
|
|
|
|
|
|
if dist.get_rank() == 0:
|
|
|
|
for key, value in losses_np.items():
|
|
|
|
self.visualizer.add_scalar(f"train_loss/{key}", value,
|
|
|
|
self.iteration)
|
|
|
|
|
|
|
|
@mp_tools.rank_zero_only
|
|
|
|
@paddle.no_grad()
|
|
|
|
def valid(self):
|
|
|
|
valid_losses = defaultdict(list)
|
|
|
|
for i, batch in enumerate(self.valid_loader):
|
|
|
|
texts, tones, mels, utterance_embeds, text_lens, output_lens, stop_tokens = batch
|
|
|
|
outputs = self.model(
|
|
|
|
texts,
|
|
|
|
text_lens,
|
|
|
|
mels,
|
|
|
|
output_lens,
|
|
|
|
tones=tones,
|
|
|
|
global_condition=utterance_embeds)
|
|
|
|
losses = self.compute_losses(batch, outputs)
|
|
|
|
for key, value in losses.items():
|
|
|
|
valid_losses[key].append(float(value))
|
|
|
|
|
|
|
|
attention_weights = outputs["alignments"]
|
|
|
|
self.visualizer.add_figure(
|
|
|
|
f"valid_sentence_{i}_alignments",
|
|
|
|
display.plot_alignment(attention_weights[0].numpy().T),
|
|
|
|
self.iteration)
|
|
|
|
self.visualizer.add_figure(
|
|
|
|
f"valid_sentence_{i}_target_spectrogram",
|
|
|
|
display.plot_spectrogram(mels[0].numpy().T), self.iteration)
|
|
|
|
mel_pred = outputs['mel_outputs_postnet']
|
|
|
|
self.visualizer.add_figure(
|
|
|
|
f"valid_sentence_{i}_predicted_spectrogram",
|
2021-08-17 15:29:30 +08:00
|
|
|
display.plot_spectrogram(mel_pred[0].numpy().T), self.iteration)
|
2021-05-13 17:49:50 +08:00
|
|
|
|
|
|
|
# write visual log
|
|
|
|
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
|
|
|
|
|
|
|
|
# logging
|
|
|
|
msg = "Valid: "
|
|
|
|
msg += "step: {}, ".format(self.iteration)
|
|
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in valid_losses.items())
|
|
|
|
self.logger.info(msg)
|
|
|
|
|
|
|
|
for key, value in valid_losses.items():
|
|
|
|
self.visualizer.add_scalar(f"valid/{key}", value, self.iteration)
|
|
|
|
|
|
|
|
@mp_tools.rank_zero_only
|
|
|
|
@paddle.no_grad()
|
|
|
|
def eval(self):
|
|
|
|
"""Evaluation of Tacotron2 in autoregressive manner."""
|
|
|
|
self.model.eval()
|
|
|
|
mel_dir = Path(self.output_dir / ("eval_{}".format(self.iteration)))
|
|
|
|
mel_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
for i, batch in enumerate(self.test_loader):
|
|
|
|
texts, tones, mels, utterance_embeds, *_ = batch
|
|
|
|
outputs = self.model.infer(
|
|
|
|
texts, tones=tones, global_condition=utterance_embeds)
|
|
|
|
|
|
|
|
display.plot_alignment(outputs["alignments"][0].numpy().T)
|
|
|
|
plt.savefig(mel_dir / f"sentence_{i}.png")
|
|
|
|
plt.close()
|
|
|
|
np.save(mel_dir / f"sentence_{i}",
|
|
|
|
outputs["mel_outputs_postnet"][0].numpy().T)
|
|
|
|
print(f"sentence_{i}")
|
|
|
|
|
|
|
|
def setup_model(self):
|
|
|
|
config = self.config
|
|
|
|
model = Tacotron2(
|
|
|
|
vocab_size=config.model.vocab_size,
|
|
|
|
n_tones=config.model.n_tones,
|
|
|
|
d_mels=config.data.d_mels,
|
|
|
|
d_encoder=config.model.d_encoder,
|
|
|
|
encoder_conv_layers=config.model.encoder_conv_layers,
|
|
|
|
encoder_kernel_size=config.model.encoder_kernel_size,
|
|
|
|
d_prenet=config.model.d_prenet,
|
|
|
|
d_attention_rnn=config.model.d_attention_rnn,
|
|
|
|
d_decoder_rnn=config.model.d_decoder_rnn,
|
|
|
|
attention_filters=config.model.attention_filters,
|
|
|
|
attention_kernel_size=config.model.attention_kernel_size,
|
|
|
|
d_attention=config.model.d_attention,
|
|
|
|
d_postnet=config.model.d_postnet,
|
|
|
|
postnet_kernel_size=config.model.postnet_kernel_size,
|
|
|
|
postnet_conv_layers=config.model.postnet_conv_layers,
|
|
|
|
reduction_factor=config.model.reduction_factor,
|
|
|
|
p_encoder_dropout=config.model.p_encoder_dropout,
|
|
|
|
p_prenet_dropout=config.model.p_prenet_dropout,
|
|
|
|
p_attention_dropout=config.model.p_attention_dropout,
|
|
|
|
p_decoder_dropout=config.model.p_decoder_dropout,
|
|
|
|
p_postnet_dropout=config.model.p_postnet_dropout,
|
|
|
|
d_global_condition=config.model.d_global_condition,
|
|
|
|
use_stop_token=config.model.use_stop_token, )
|
|
|
|
|
|
|
|
if self.parallel:
|
|
|
|
model = paddle.DataParallel(model)
|
|
|
|
|
|
|
|
grad_clip = paddle.nn.ClipGradByGlobalNorm(
|
|
|
|
config.training.grad_clip_thresh)
|
|
|
|
optimizer = paddle.optimizer.Adam(
|
|
|
|
learning_rate=config.training.lr,
|
|
|
|
parameters=model.parameters(),
|
|
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
|
|
config.training.weight_decay),
|
|
|
|
grad_clip=grad_clip)
|
|
|
|
criterion = Tacotron2Loss(
|
|
|
|
use_stop_token_loss=config.model.use_stop_token,
|
|
|
|
use_guided_attention_loss=config.model.use_guided_attention_loss,
|
|
|
|
sigma=config.model.guided_attention_loss_sigma)
|
|
|
|
self.model = model
|
|
|
|
self.optimizer = optimizer
|
|
|
|
self.criterion = criterion
|
|
|
|
|
|
|
|
def setup_dataloader(self):
|
|
|
|
args = self.args
|
|
|
|
config = self.config
|
|
|
|
ljspeech_dataset = AiShell3(args.data)
|
|
|
|
|
|
|
|
valid_set, train_set = dataset.split(ljspeech_dataset,
|
|
|
|
config.data.valid_size)
|
|
|
|
batch_fn = collate_aishell3_examples
|
|
|
|
|
|
|
|
if not self.parallel:
|
|
|
|
self.train_loader = DataLoader(
|
|
|
|
train_set,
|
|
|
|
batch_size=config.data.batch_size,
|
|
|
|
shuffle=True,
|
|
|
|
drop_last=True,
|
|
|
|
collate_fn=batch_fn)
|
|
|
|
else:
|
|
|
|
sampler = DistributedBatchSampler(
|
|
|
|
train_set,
|
|
|
|
batch_size=config.data.batch_size,
|
|
|
|
shuffle=True,
|
|
|
|
drop_last=True)
|
|
|
|
self.train_loader = DataLoader(
|
|
|
|
train_set, batch_sampler=sampler, collate_fn=batch_fn)
|
|
|
|
|
|
|
|
self.valid_loader = DataLoader(
|
|
|
|
valid_set,
|
|
|
|
batch_size=config.data.batch_size,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
collate_fn=batch_fn)
|
|
|
|
|
|
|
|
self.test_loader = DataLoader(
|
|
|
|
valid_set,
|
|
|
|
batch_size=1,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
collate_fn=batch_fn)
|
|
|
|
|
|
|
|
|
|
|
|
def main_sp(config, args):
|
|
|
|
exp = Experiment(config, args)
|
|
|
|
exp.setup()
|
|
|
|
exp.resume_or_load()
|
|
|
|
if not args.test:
|
|
|
|
exp.run()
|
|
|
|
else:
|
|
|
|
exp.eval()
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
if args.nprocs > 1 and args.device == "gpu":
|
|
|
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
|
|
|
else:
|
|
|
|
main_sp(config, args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
config = get_cfg_defaults()
|
|
|
|
parser = default_argument_parser()
|
|
|
|
parser.add_argument("--test", action="store_true")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
print(config)
|
|
|
|
print(args)
|
|
|
|
|
|
|
|
main(config, args)
|