ParakeetRebeccaRosario/examples/deepvoice3/preprocess.py

123 lines
4.7 KiB
Python
Raw Normal View History

2020-07-10 20:22:43 +08:00
from __future__ import division
import os
import argparse
from ruamel import yaml
import tqdm
from os.path import join
import csv
import numpy as np
import pandas as pd
import librosa
import logging
from parakeet.data import DatasetMixin
class LJSpeechMetaData(DatasetMixin):
def __init__(self, root):
self.root = root
self._wav_dir = join(root, "wavs")
csv_path = join(root, "metadata.csv")
self._table = pd.read_csv(
csv_path,
sep="|",
encoding="utf-8",
header=None,
quoting=csv.QUOTE_NONE,
names=["fname", "raw_text", "normalized_text"])
def get_example(self, i):
fname, raw_text, normalized_text = self._table.iloc[i]
abs_fname = join(self._wav_dir, fname + ".wav")
return fname, abs_fname, raw_text, normalized_text
def __len__(self):
return len(self._table)
class Transform(object):
def __init__(self, sample_rate, n_fft, hop_length, win_length, n_mels, reduction_factor):
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_mels = n_mels
self.reduction_factor = reduction_factor
def __call__(self, fname):
# wave processing
audio, _ = librosa.load(fname, sr=self.sample_rate)
# Pad the data to the right size to have a whole number of timesteps,
# accounting properly for the model reduction factor.
frames = audio.size // (self.reduction_factor * self.hop_length) + 1
# librosa's stft extract frame of n_fft size, so we should pad n_fft // 2 on both sidess
desired_length = (frames * self.reduction_factor - 1) * self.hop_length + self.n_fft
pad_amount = (desired_length - audio.size) // 2
# we pad mannually to control the number of generated frames
if audio.size % 2 == 0:
audio = np.pad(audio, (pad_amount, pad_amount), mode='reflect')
else:
audio = np.pad(audio, (pad_amount, pad_amount + 1), mode='reflect')
# STFT
D = librosa.stft(audio, self.n_fft, self.hop_length, self.win_length, center=False)
S = np.abs(D)
S_mel = librosa.feature.melspectrogram(sr=self.sample_rate, S=S, n_mels=self.n_mels, fmax=8000.0)
# log magnitude
log_spectrogram = np.log(np.clip(S, a_min=1e-5, a_max=None))
log_mel_spectrogram = np.log(np.clip(S_mel, a_min=1e-5, a_max=None))
num_frames = log_spectrogram.shape[-1]
assert num_frames % self.reduction_factor == 0, "num_frames is wrong"
return (log_spectrogram.T, log_mel_spectrogram.T, num_frames)
def save(output_path, dataset, transform):
if not os.path.exists(output_path):
os.makedirs(output_path)
records = []
for example in tqdm.tqdm(dataset):
fname, abs_fname, _, normalized_text = example
log_spec, log_mel_spec, num_frames = transform(abs_fname)
records.append((num_frames,
fname + "_spec.npy",
fname + "_mel.npy",
normalized_text))
np.save(join(output_path, fname + "_spec"), log_spec)
np.save(join(output_path, fname + "_mel"), log_mel_spec)
meta_data = pd.DataFrame.from_records(records)
meta_data.to_csv(join(output_path, "metadata.csv"),
quoting=csv.QUOTE_NONE, sep="|", encoding="utf-8",
header=False, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="preprocess ljspeech dataset and save it.")
parser.add_argument("--config", type=str, required=True, help="config file")
parser.add_argument("--input", type=str, required=True, help="data path of the original data")
parser.add_argument("--output", type=str, required=True, help="path to save the preprocessed dataset")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = yaml.safe_load(f)
print("========= Command Line Arguments ========")
for k, v in vars(args).items():
print("{}: {}".format(k, v))
print("=========== Configurations ==============")
for k in ["sample_rate", "n_fft", "win_length",
"hop_length", "n_mels", "reduction_factor"]:
print("{}: {}".format(k, config[k]))
ljspeech_meta = LJSpeechMetaData(args.input)
transform = Transform(config["sample_rate"],
config["n_fft"],
config["hop_length"],
config["win_length"],
config["n_mels"],
config["reduction_factor"])
save(args.output, ljspeech_meta, transform)