58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import math
|
||
|
import numpy as np
|
||
|
|
||
|
import paddle
|
||
|
from paddle import Tensor
|
||
|
from paddle.static import InputSpec
|
||
|
from paddle.nn import functional as F
|
||
|
|
||
|
|
||
|
def sinusoid_position_encoding(num_positions: int,
|
||
|
feature_size: int,
|
||
|
omega: float=1.0,
|
||
|
start_pos: int=0,
|
||
|
dtype=None) -> paddle.Tensor:
|
||
|
# return tensor shape (num_positions, feature_size)
|
||
|
|
||
|
if (feature_size % 2 != 0):
|
||
|
raise ValueError("size should be divisible by 2")
|
||
|
dtype = dtype or paddle.get_default_dtype()
|
||
|
|
||
|
channel = paddle.arange(0, feature_size, 2, dtype=dtype)
|
||
|
index = paddle.arange(start_pos, start_pos + num_positions, 1, dtype=dtype)
|
||
|
p = (paddle.unsqueeze(index, -1) *
|
||
|
omega) / (10000.0**(channel / float(feature_size)))
|
||
|
encodings = paddle.zeros([num_positions, feature_size], dtype=dtype)
|
||
|
encodings[:, 0::2] = paddle.sin(p)
|
||
|
encodings[:, 1::2] = paddle.cos(p)
|
||
|
return encodings
|
||
|
|
||
|
|
||
|
def call_it(x):
|
||
|
shape = paddle.shape(x)
|
||
|
a = shape[0]
|
||
|
b = shape[1]
|
||
|
c = sinusoid_position_encoding(a, b)
|
||
|
return c
|
||
|
|
||
|
|
||
|
call_it(paddle.randn([8, 32]))
|
||
|
m = paddle.jit.to_static(
|
||
|
call_it, input_spec=[InputSpec(
|
||
|
[-1, -1], dtype=paddle.int32)])
|
||
|
m(paddle.randn([8, 32]).astype(paddle.int32))
|