Paddle fluid implementation of TransformerTTS, a neural TTS with Transformer. The implementation is based on [Neural Speech Synthesis with Transformer Network](https://arxiv.org/abs/1809.08895).
![TransformerTTS model architecture](./images/model_architecture.jpg)
The model adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in [Tacotron2](https://arxiv.org/abs/1712.05884). The model consists of two main parts, encoder and decoder. We also implemented CBHG model of tacotron as a vocoder part and converted the spectrogram into raw wave using griffin-lim algorithm.
## Project Structure
```text
├── config # yaml configuration files
├── data.py # dataset and dataloader settings for LJSpeech
├── synthesis.py # script to synthesize waveform from text
├── train_transformer.py # script for transformer model training
├── train_vocoder.py # script for vocoder model training
```
## Train Transformer
TransformerTTS model can train with ``train_transformer.py``.
```bash
python train_trasformer.py \
--use_gpu=1 \
--use_data_parallel=0 \
--data_path=${DATAPATH} \
--config_path='config/train_transformer.yaml' \
```
or you can run the script file directly.
```bash
sh train_transformer.sh
```
If you want to train on multiple GPUs, you must set ``--use_data_parallel=1``, and then start training as follow: