ParakeetRebeccaRosario/examples/ge2e/dataset_processors.py

184 lines
6.5 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import List
from pathlib import Path
import multiprocessing as mp
import numpy as np
from tqdm import tqdm
from audio_processor import SpeakerVerificationPreprocessor
def _process_utterance(path_pair, processor: SpeakerVerificationPreprocessor):
# Load and preprocess the waveform
input_path, output_path = path_pair
wav = processor.preprocess_wav(input_path)
if len(wav) == 0:
return
# Create the mel spectrogram, discard those that are too short
frames = processor.melspectrogram(wav)
if len(frames) < processor.partial_n_frames:
return
np.save(output_path, frames)
def _process_speaker(speaker_dir: Path,
processor: SpeakerVerificationPreprocessor,
datasets_root: Path,
output_dir: Path,
pattern: str,
skip_existing: bool=False):
# datastes root: a reference path to compute speaker_name
# we prepand dataset name to speaker_id becase we are mixing serveal
# multispeaker datasets together
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
speaker_output_dir = output_dir / speaker_name
speaker_output_dir.mkdir(parents=True, exist_ok=True)
# load exsiting file set
sources_fpath = speaker_output_dir / "_sources.txt"
if sources_fpath.exists():
try:
with sources_fpath.open("rt") as sources_file:
existing_names = {line.split(",")[0] for line in sources_file}
except:
existing_names = {}
else:
existing_names = {}
sources_file = sources_fpath.open("at" if skip_existing else "wt")
for in_fpath in speaker_dir.rglob(pattern):
out_name = "_".join(
in_fpath.relative_to(speaker_dir).with_suffix(".npy").parts)
if skip_existing and out_name in existing_names:
continue
out_fpath = speaker_output_dir / out_name
_process_utterance((in_fpath, out_fpath), processor)
sources_file.write(f"{out_name},{in_fpath}\n")
sources_file.close()
def _process_dataset(processor: SpeakerVerificationPreprocessor,
datasets_root: Path,
speaker_dirs: List[Path],
dataset_name: str,
output_dir: Path,
pattern: str,
skip_existing: bool=False):
print(
f"{dataset_name}: Preprocessing data for {len(speaker_dirs)} speakers.")
_func = partial(
_process_speaker,
processor=processor,
datasets_root=datasets_root,
output_dir=output_dir,
pattern=pattern,
skip_existing=skip_existing)
with mp.Pool(16) as pool:
list(
tqdm(
pool.imap(_func, speaker_dirs),
dataset_name,
len(speaker_dirs),
unit="speakers"))
print(f"Done preprocessing {dataset_name}.")
def process_librispeech(processor,
datasets_root,
output_dir,
skip_existing=False):
dataset_name = "LibriSpeech/train-other-500"
dataset_root = datasets_root / dataset_name
speaker_dirs = list(dataset_root.glob("*"))
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
output_dir, "*.flac", skip_existing)
def process_voxceleb1(processor,
datasets_root,
output_dir,
skip_existing=False):
dataset_name = "VoxCeleb1"
dataset_root = datasets_root / dataset_name
anglophone_nationalites = ["australia", "canada", "ireland", "uk", "usa"]
with dataset_root.joinpath("vox1_meta.csv").open("rt") as metafile:
metadata = [line.strip().split("\t") for line in metafile][1:]
# speaker id -> nationality
nationalities = {
line[0]: line[3]
for line in metadata if line[-1] == "dev"
}
keep_speaker_ids = [
speaker_id for speaker_id, nationality in nationalities.items()
if nationality.lower() in anglophone_nationalites
]
print(
"VoxCeleb1: using samples from {} (presumed anglophone) speakers out of {}."
.format(len(keep_speaker_ids), len(nationalities)))
speaker_dirs = list((dataset_root / "wav").glob("*"))
speaker_dirs = [
speaker_dir for speaker_dir in speaker_dirs
if speaker_dir.name in keep_speaker_ids
]
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
output_dir, "*.wav", skip_existing)
def process_voxceleb2(processor,
datasets_root,
output_dir,
skip_existing=False):
dataset_name = "VoxCeleb2"
dataset_root = datasets_root / dataset_name
# There is no nationality in meta data for VoxCeleb2
speaker_dirs = list((dataset_root / "wav").glob("*"))
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
output_dir, "*.wav", skip_existing)
def process_aidatatang_200zh(processor,
datasets_root,
output_dir,
skip_existing=False):
dataset_name = "aidatatang_200zh/train"
dataset_root = datasets_root / dataset_name
speaker_dirs = list((dataset_root).glob("*"))
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
output_dir, "*.wav", skip_existing)
def process_magicdata(processor,
datasets_root,
output_dir,
skip_existing=False):
dataset_name = "magicdata/train"
dataset_root = datasets_root / dataset_name
speaker_dirs = list((dataset_root).glob("*"))
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
output_dir, "*.wav", skip_existing)