ParakeetRebeccaRosario/examples/ge2e/speaker_verification_datase...

132 lines
4.1 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from pathlib import Path
import numpy as np
from paddle.io import Dataset, BatchSampler
from random_cycle import random_cycle
class MultiSpeakerMelDataset(Dataset):
"""A 2 layer directory thatn contains mel spectrograms in *.npy format.
An Example file structure tree is shown below. We prefer to preprocess
raw datasets and organized them like this.
dataset_root/
speaker1/
utterance1.npy
utterance2.npy
utterance3.npy
speaker2/
utterance1.npy
utterance2.npy
utterance3.npy
"""
def __init__(self, dataset_root: Path):
self.root = Path(dataset_root).expanduser()
speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()]
speaker_utterances = {
speaker_dir: list(speaker_dir.glob("*.npy"))
for speaker_dir in speaker_dirs
}
self.speaker_dirs = speaker_dirs
self.speaker_to_utterances = speaker_utterances
# meta data
self.num_speakers = len(self.speaker_dirs)
self.num_utterances = np.sum(
len(utterances)
for speaker, utterances in self.speaker_to_utterances.items())
def get_example_by_index(self, speaker_index, utterance_index):
speaker_dir = self.speaker_dirs[speaker_index]
fpath = self.speaker_to_utterances[speaker_dir][utterance_index]
return self[fpath]
def __getitem__(self, fpath):
return np.load(fpath)
def __len__(self):
return int(self.num_utterances)
class MultiSpeakerSampler(BatchSampler):
"""A multi-stratal sampler designed for speaker verification task.
First, N speakers from all speakers are sampled randomly. Then, for each
speaker, randomly sample M utterances from their corresponding utterances.
"""
def __init__(self,
dataset: MultiSpeakerMelDataset,
speakers_per_batch: int,
utterances_per_speaker: int):
self._speakers = list(dataset.speaker_dirs)
self._speaker_to_utterances = dataset.speaker_to_utterances
self.speakers_per_batch = speakers_per_batch
self.utterances_per_speaker = utterances_per_speaker
def __iter__(self):
# yield list of Paths
speaker_generator = iter(random_cycle(self._speakers))
speaker_utterances_generator = {
s: iter(random_cycle(us))
for s, us in self._speaker_to_utterances.items()
}
while True:
speakers = []
for _ in range(self.speakers_per_batch):
speakers.append(next(speaker_generator))
utterances = []
for s in speakers:
us = speaker_utterances_generator[s]
for _ in range(self.utterances_per_speaker):
utterances.append(next(us))
yield utterances
class RandomClip(object):
def __init__(self, frames):
self.frames = frames
def __call__(self, spec):
# spec [T, C]
T = spec.shape[0]
start = random.randint(0, T - self.frames)
return spec[start:start + self.frames, :]
class Collate(object):
def __init__(self, num_frames):
self.random_crop = RandomClip(num_frames)
def __call__(self, examples):
frame_clips = [self.random_crop(mel) for mel in examples]
batced_clips = np.stack(frame_clips)
return batced_clips
if __name__ == "__main__":
mydataset = MultiSpeakerMelDataset(
Path("/home/chenfeiyu/datasets/SV2TTS/encoder"))
print(mydataset.get_example_by_index(0, 10))