ParakeetRebeccaRosario/examples/parallelwave_gan/baker/compute_statistics.py

109 lines
3.4 KiB
Python
Raw Normal View History

2021-06-17 00:18:13 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate statistics of feature files."""
import argparse
import logging
import os
import numpy as np
import yaml
import json
import jsonlines
2021-06-17 00:18:13 +08:00
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from parakeet.datasets.data_table import DataTable
from parakeet.utils.h5_utils import read_hdf5
from parakeet.utils.h5_utils import write_hdf5
from config import get_cfg_default
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Compute mean and variance of dumped raw features.")
parser.add_argument(
"--metadata", type=str, help="json file with id and file paths ")
2021-06-17 00:18:13 +08:00
parser.add_argument(
"--field-name", type=str, help="json file with id and file paths ")
2021-06-17 00:18:13 +08:00
parser.add_argument(
"--config", type=str, help="yaml format configuration file.")
parser.add_argument(
"--dumpdir",
type=str,
help="directory to save statistics. if not provided, "
"stats will be saved in the above root directory. (default=None)")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
config = get_cfg_default()
# load config
if args.config:
config.merge_from_file(args.config)
# check directory existence
if args.dumpdir is None:
args.dumpdir = os.path.dirname(args.metadata)
if not os.path.exists(args.dumpdir):
os.makedirs(args.dumpdir)
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
2021-06-17 00:18:13 +08:00
dataset = DataTable(
metadata,
fields=[args.field_name],
converters={args.field_name: np.load}, )
logging.info(f"The number of files = {len(dataset)}.")
# calculate statistics
scaler = StandardScaler()
for datum in tqdm(dataset):
# StandardScalar supports (*, num_features) by default
scaler.partial_fit(datum[args.field_name])
2021-06-17 00:18:13 +08:00
stats = np.stack([scaler.mean_, scaler.scale_], axis=0)
np.save(
os.path.join(args.dumpdir, "stats.npy"),
stats.astype(np.float32),
allow_pickle=False)
if __name__ == "__main__":
main()