ParakeetRebeccaRosario/parakeet/models/tacotron2.py

850 lines
28 KiB
Python
Raw Normal View History

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
2020-12-11 11:56:40 +08:00
import parakeet
from parakeet.modules.conv import Conv1dBatchNorm
from parakeet.modules.attention import LocationSensitiveAttention
from parakeet.modules import masking
from parakeet.utils import checkpoint
__all__ = ["Tacotron2", "Tacotron2Loss"]
class DecoderPreNet(nn.Layer):
2020-12-18 15:50:05 +08:00
"""Decoder prenet module for Tacotron2.
2020-12-18 15:31:40 +08:00
Parameters
----------
d_input: int
The input feature size.
2020-12-18 15:31:40 +08:00
d_hidden: int
The hidden size.
2020-12-18 15:31:40 +08:00
d_output: int
The output feature size.
2020-12-18 15:31:40 +08:00
dropout_rate: float
The droput probability.
2020-12-18 15:31:40 +08:00
"""
def __init__(self,
d_input: int,
d_hidden: int,
d_output: int,
dropout_rate: float):
super().__init__()
2020-12-11 11:56:40 +08:00
self.dropout_rate = dropout_rate
self.linear1 = nn.Linear(d_input, d_hidden, bias_attr=False)
self.linear2 = nn.Linear(d_hidden, d_output, bias_attr=False)
def forward(self, x):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation.
Parameters
----------
2020-12-18 15:50:05 +08:00
x: Tensor [shape=(B, T_mel, C)]
Batch of the sequences of padded mel spectrogram.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 15:50:05 +08:00
output: Tensor [shape=(B, T_mel, C)]
Batch of the sequences of padded hidden state.
2020-12-18 15:31:40 +08:00
"""
x = F.dropout(
F.relu(self.linear1(x)), self.dropout_rate, training=True)
output = F.dropout(
F.relu(self.linear2(x)), self.dropout_rate, training=True)
return output
class DecoderPostNet(nn.Layer):
2020-12-18 15:50:05 +08:00
"""Decoder postnet module for Tacotron2.
2020-12-18 15:31:40 +08:00
Parameters
----------
d_mels: int
The number of mel bands.
2020-12-18 15:31:40 +08:00
d_hidden: int
The hidden size of postnet.
2020-12-18 15:31:40 +08:00
kernel_size: int
The kernel size of the conv layer in postnet.
2020-12-18 15:31:40 +08:00
num_layers: int
The number of conv layers in postnet.
2020-12-18 15:31:40 +08:00
dropout: float
The droput probability.
2020-12-18 15:31:40 +08:00
"""
def __init__(self,
d_mels: int,
d_hidden: int,
kernel_size: int,
num_layers: int,
dropout: float):
super().__init__()
self.dropout = dropout
2020-12-11 11:56:40 +08:00
self.num_layers = num_layers
2020-12-18 15:31:40 +08:00
padding = int((kernel_size - 1) / 2),
self.conv_batchnorms = nn.LayerList()
k = math.sqrt(1.0 / (d_mels * kernel_size))
self.conv_batchnorms.append(
Conv1dBatchNorm(
d_mels,
d_hidden,
kernel_size=kernel_size,
padding=padding,
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Uniform(
low=-k, high=k)),
data_format='NLC'))
k = math.sqrt(1.0 / (d_hidden * kernel_size))
self.conv_batchnorms.extend([
Conv1dBatchNorm(
d_hidden,
d_hidden,
kernel_size=kernel_size,
padding=padding,
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Uniform(
low=-k, high=k)),
data_format='NLC') for i in range(1, num_layers - 1)
])
self.conv_batchnorms.append(
Conv1dBatchNorm(
d_hidden,
d_mels,
kernel_size=kernel_size,
padding=padding,
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Uniform(
low=-k, high=k)),
data_format='NLC'))
def forward(self, input):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation.
Parameters
----------
2020-12-18 15:50:05 +08:00
input: Tensor [shape=(B, T_mel, C)]
Output sequence of features from decoder.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 15:50:05 +08:00
output: Tensor [shape=(B, T_mel, C)]
Output sequence of features after postnet.
2020-12-18 15:31:40 +08:00
"""
for i in range(len(self.conv_batchnorms) - 1):
input = F.dropout(
F.tanh(self.conv_batchnorms[i](input)),
self.dropout,
training=self.training)
output = F.dropout(
self.conv_batchnorms[self.num_layers - 1](input),
self.dropout,
training=self.training)
2020-12-18 15:31:40 +08:00
return output
class Tacotron2Encoder(nn.Layer):
2020-12-18 15:50:05 +08:00
"""Tacotron2 encoder module for Tacotron2.
2020-12-18 15:31:40 +08:00
Parameters
----------
d_hidden: int
The hidden size in encoder module.
2020-12-18 15:31:40 +08:00
conv_layers: int
The number of conv layers.
2020-12-18 15:31:40 +08:00
kernel_size: int
The kernel size of conv layers.
2020-12-18 15:31:40 +08:00
p_dropout: float
The droput probability.
2020-12-18 15:31:40 +08:00
"""
def __init__(self,
d_hidden: int,
conv_layers: int,
kernel_size: int,
p_dropout: float):
super().__init__()
k = math.sqrt(1.0 / (d_hidden * kernel_size))
self.conv_batchnorms = paddle.nn.LayerList([
Conv1dBatchNorm(
d_hidden,
d_hidden,
kernel_size,
stride=1,
padding=int((kernel_size - 1) / 2),
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Uniform(
low=-k, high=k)),
data_format='NLC') for i in range(conv_layers)
])
self.p_dropout = p_dropout
self.hidden_size = int(d_hidden / 2)
self.lstm = nn.LSTM(
d_hidden, self.hidden_size, direction="bidirectional")
def forward(self, x, input_lens=None):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation of tacotron2 encoder.
Parameters
----------
2020-12-18 15:50:05 +08:00
x: Tensor [shape=(B, T)]
Batch of the sequencees of padded character ids.
2020-12-18 15:31:40 +08:00
text_lens: Tensor [shape=(B,)], optional
Batch of lengths of each text input batch. Defaults to None.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 15:50:05 +08:00
output : Tensor [shape=(B, T, C)]
Batch of the sequences of padded hidden states.
2020-12-18 15:31:40 +08:00
"""
2020-12-11 11:56:40 +08:00
for conv_batchnorm in self.conv_batchnorms:
x = F.dropout(
F.relu(conv_batchnorm(x)),
self.p_dropout,
training=self.training)
output, _ = self.lstm(inputs=x, sequence_length=input_lens)
return output
class Tacotron2Decoder(nn.Layer):
2020-12-18 15:50:05 +08:00
"""Tacotron2 decoder module for Tacotron2.
2020-12-18 15:31:40 +08:00
Parameters
----------
d_mels: int
The number of mel bands.
2020-12-18 15:31:40 +08:00
reduction_factor: int
The reduction factor of tacotron.
2020-12-18 15:31:40 +08:00
d_encoder: int
The hidden size of encoder.
2020-12-18 15:31:40 +08:00
d_prenet: int
The hidden size in decoder prenet.
2020-12-18 15:31:40 +08:00
d_attention_rnn: int
The attention rnn layer hidden size.
2020-12-18 15:31:40 +08:00
d_decoder_rnn: int
The decoder rnn layer hidden size.
2020-12-18 15:31:40 +08:00
d_attention: int
The hidden size of the linear layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
attention_filters: int
The filter size of the conv layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
attention_kernel_size: int
The kernel size of the conv layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
p_prenet_dropout: float
The droput probability in decoder prenet.
2020-12-18 15:31:40 +08:00
p_attention_dropout: float
The droput probability in location sensitive attention.
2020-12-18 15:31:40 +08:00
p_decoder_dropout: float
The droput probability in decoder.
2020-12-18 15:50:05 +08:00
"""
2020-12-18 15:31:40 +08:00
def __init__(self,
d_mels: int,
reduction_factor: int,
d_encoder: int,
d_prenet: int,
d_attention_rnn: int,
d_decoder_rnn: int,
d_attention: int,
attention_filters: int,
attention_kernel_size: int,
p_prenet_dropout: float,
p_attention_dropout: float,
p_decoder_dropout: float):
super().__init__()
self.d_mels = d_mels
self.reduction_factor = reduction_factor
self.d_encoder = d_encoder
self.d_attention_rnn = d_attention_rnn
self.d_decoder_rnn = d_decoder_rnn
self.p_attention_dropout = p_attention_dropout
self.p_decoder_dropout = p_decoder_dropout
self.prenet = DecoderPreNet(
d_mels * reduction_factor,
d_prenet,
d_prenet,
dropout_rate=p_prenet_dropout)
self.attention_rnn = nn.LSTMCell(d_prenet + d_encoder, d_attention_rnn)
self.attention_layer = LocationSensitiveAttention(
d_attention_rnn, d_encoder, d_attention, attention_filters,
attention_kernel_size)
self.decoder_rnn = nn.LSTMCell(d_attention_rnn + d_encoder,
d_decoder_rnn)
self.linear_projection = nn.Linear(d_decoder_rnn + d_encoder,
d_mels * reduction_factor)
self.stop_layer = nn.Linear(d_decoder_rnn + d_encoder, 1)
def _initialize_decoder_states(self, key):
2020-12-18 15:31:40 +08:00
"""init states be used in decoder
"""
batch_size = key.shape[0]
MAX_TIME = key.shape[1]
self.attention_hidden = paddle.zeros(
shape=[batch_size, self.d_attention_rnn], dtype=key.dtype)
self.attention_cell = paddle.zeros(
shape=[batch_size, self.d_attention_rnn], dtype=key.dtype)
self.decoder_hidden = paddle.zeros(
shape=[batch_size, self.d_decoder_rnn], dtype=key.dtype)
self.decoder_cell = paddle.zeros(
shape=[batch_size, self.d_decoder_rnn], dtype=key.dtype)
self.attention_weights = paddle.zeros(
shape=[batch_size, MAX_TIME], dtype=key.dtype)
self.attention_weights_cum = paddle.zeros(
shape=[batch_size, MAX_TIME], dtype=key.dtype)
self.attention_context = paddle.zeros(
shape=[batch_size, self.d_encoder], dtype=key.dtype)
self.key = key #[B, T, C]
self.processed_key = self.attention_layer.key_layer(key) #[B, T, C]
def _decode(self, query):
2020-12-18 15:31:40 +08:00
"""decode one time step
"""
cell_input = paddle.concat([query, self.attention_context], axis=-1)
# The first lstm layer
_, (self.attention_hidden, self.attention_cell) = self.attention_rnn(
cell_input, (self.attention_hidden, self.attention_cell))
self.attention_hidden = F.dropout(
self.attention_hidden,
self.p_attention_dropout,
training=self.training)
# Loaction sensitive attention
attention_weights_cat = paddle.stack(
[self.attention_weights, self.attention_weights_cum], axis=-1)
self.attention_context, self.attention_weights = self.attention_layer(
self.attention_hidden, self.processed_key, self.key,
attention_weights_cat, self.mask)
self.attention_weights_cum += self.attention_weights
2020-12-11 11:56:40 +08:00
# The second lstm layer
decoder_input = paddle.concat(
[self.attention_hidden, self.attention_context], axis=-1)
_, (self.decoder_hidden, self.decoder_cell) = self.decoder_rnn(
decoder_input, (self.decoder_hidden, self.decoder_cell))
self.decoder_hidden = F.dropout(
self.decoder_hidden,
p=self.p_decoder_dropout,
training=self.training)
# decode output one step
decoder_hidden_attention_context = paddle.concat(
[self.decoder_hidden, self.attention_context], axis=-1)
decoder_output = self.linear_projection(
decoder_hidden_attention_context)
stop_logit = self.stop_layer(decoder_hidden_attention_context)
return decoder_output, stop_logit, self.attention_weights
2020-12-11 11:56:40 +08:00
def forward(self, keys, querys, mask):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation of tacotron2 decoder.
Parameters
----------
keys: Tensor[shape=(B, T_key, C)]
Batch of the sequences of padded output from encoder.
2020-12-18 15:31:40 +08:00
querys: Tensor[shape(B, T_query, C)]
Batch of the sequences of padded mel spectrogram.
2020-12-18 15:31:40 +08:00
mask: Tensor
Mask generated with text length. Shape should be (B, T_key, T_query) or broadcastable shape.
2020-12-18 15:31:40 +08:00
Returns
-------
mel_output: Tensor [shape=(B, T_query, C)]
Output sequence of features.
2020-12-18 15:31:40 +08:00
stop_logits: Tensor [shape=(B, T_query)]
Output sequence of stop logits.
2020-12-18 15:31:40 +08:00
alignments: Tensor [shape=(B, T_query, T_key)]
Attention weights.
2020-12-18 15:31:40 +08:00
"""
2020-12-11 11:56:40 +08:00
querys = paddle.reshape(
querys,
[querys.shape[0], querys.shape[1] // self.reduction_factor, -1])
querys = paddle.concat(
[
paddle.zeros(
2020-12-17 10:56:45 +08:00
shape=[querys.shape[0], 1, querys.shape[-1]],
2020-12-11 11:56:40 +08:00
dtype=querys.dtype), querys
],
axis=1)
2020-12-11 11:56:40 +08:00
querys = self.prenet(querys)
2020-12-11 11:56:40 +08:00
self._initialize_decoder_states(keys)
self.mask = mask
mel_outputs, stop_logits, alignments = [], [], []
2020-12-11 11:56:40 +08:00
while len(mel_outputs) < querys.shape[
1] - 1: # Ignore the last time step
2020-12-11 11:56:40 +08:00
query = querys[:, len(mel_outputs), :]
mel_output, stop_logit, attention_weights = self._decode(query)
mel_outputs += [mel_output]
stop_logits += [stop_logit]
alignments += [attention_weights]
alignments = paddle.stack(alignments, axis=1)
stop_logits = paddle.concat(stop_logits, axis=1)
mel_outputs = paddle.stack(mel_outputs, axis=1)
return mel_outputs, stop_logits, alignments
def infer(self, key, stop_threshold=0.5, max_decoder_steps=1000):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation of tacotron2 decoder.
Parameters
----------
keys: Tensor [shape=(B, T_key, C)]
Batch of the sequences of padded output from encoder.
2020-12-18 15:31:40 +08:00
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
2020-12-18 15:31:40 +08:00
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 15:50:05 +08:00
mel_output: Tensor [shape=(B, T_mel, C)]
Output sequence of features.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
stop_logits: Tensor [shape=(B, T_mel)]
Output sequence of stop logits.
2020-12-18 15:31:40 +08:00
alignments: Tensor [shape=(B, T_mel, T_key)]
Attention weights.
2020-12-18 15:31:40 +08:00
"""
2020-12-17 10:56:45 +08:00
query = paddle.zeros(
shape=[key.shape[0], self.d_mels * self.reduction_factor],
dtype=key.dtype) #[B, C]
self._initialize_decoder_states(key)
self.mask = None
mel_outputs, stop_logits, alignments = [], [], []
while True:
2020-12-17 10:56:45 +08:00
query = self.prenet(query)
mel_output, stop_logit, alignment = self._decode(query)
mel_outputs += [mel_output]
stop_logits += [stop_logit]
alignments += [alignment]
if F.sigmoid(stop_logit) > stop_threshold:
break
elif len(mel_outputs) == max_decoder_steps:
print("Warning! Reached max decoder steps!!!")
break
2020-12-17 10:56:45 +08:00
query = mel_output
alignments = paddle.stack(alignments, axis=1)
stop_logits = paddle.concat(stop_logits, axis=1)
mel_outputs = paddle.stack(mel_outputs, axis=1)
return mel_outputs, stop_logits, alignments
class Tacotron2(nn.Layer):
2020-12-18 15:50:05 +08:00
"""Tacotron2 model for end-to-end text-to-speech (E2E-TTS).
2020-12-18 15:31:40 +08:00
This is a model of Spectrogram prediction network in Tacotron2 described
in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
<https://arxiv.org/abs/1712.05884>`_,
which converts the sequence of characters
into the sequence of mel spectrogram.
2020-12-18 15:31:40 +08:00
Parameters
----------
frontend : parakeet.frontend.Phonetics
Frontend used to preprocess text.
2020-12-18 15:31:40 +08:00
d_mels: int
Number of mel bands.
2020-12-18 15:31:40 +08:00
d_encoder: int
Hidden size in encoder module.
2020-12-18 15:31:40 +08:00
encoder_conv_layers: int
Number of conv layers in encoder.
2020-12-18 15:31:40 +08:00
encoder_kernel_size: int
Kernel size of conv layers in encoder.
2020-12-18 15:31:40 +08:00
d_prenet: int
Hidden size in decoder prenet.
2020-12-18 15:31:40 +08:00
d_attention_rnn: int
Attention rnn layer hidden size in decoder.
2020-12-18 15:31:40 +08:00
d_decoder_rnn: int
Decoder rnn layer hidden size in decoder.
2020-12-18 15:31:40 +08:00
attention_filters: int
Filter size of the conv layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
attention_kernel_size: int
Kernel size of the conv layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
d_attention: int
Hidden size of the linear layer in location sensitive attention.
2020-12-18 15:31:40 +08:00
d_postnet: int
Hidden size of postnet.
2020-12-18 15:31:40 +08:00
postnet_kernel_size: int
Kernel size of the conv layer in postnet.
2020-12-18 15:31:40 +08:00
postnet_conv_layers: int
Number of conv layers in postnet.
2020-12-18 15:31:40 +08:00
reduction_factor: int
Reduction factor of tacotron2.
2020-12-18 15:31:40 +08:00
p_encoder_dropout: float
Droput probability in encoder.
2020-12-18 15:31:40 +08:00
p_prenet_dropout: float
Droput probability in decoder prenet.
2020-12-18 15:31:40 +08:00
p_attention_dropout: float
Droput probability in location sensitive attention.
2020-12-18 15:31:40 +08:00
p_decoder_dropout: float
Droput probability in decoder.
2020-12-18 15:31:40 +08:00
p_postnet_dropout: float
Droput probability in postnet.
2020-12-18 15:31:40 +08:00
"""
def __init__(self,
frontend: parakeet.frontend.Phonetics,
d_mels: int=80,
d_encoder: int=512,
2020-12-11 11:56:40 +08:00
encoder_conv_layers: int=3,
encoder_kernel_size: int=5,
d_prenet: int=256,
d_attention_rnn: int=1024,
d_decoder_rnn: int=1024,
attention_filters: int=32,
attention_kernel_size: int=31,
d_attention: int=128,
d_postnet: int=512,
postnet_kernel_size: int=5,
postnet_conv_layers: int=5,
reduction_factor: int=1,
p_encoder_dropout: float=0.5,
p_prenet_dropout: float=0.5,
p_attention_dropout: float=0.1,
p_decoder_dropout: float=0.1,
p_postnet_dropout: float=0.5):
super().__init__()
self.frontend = frontend
std = math.sqrt(2.0 / (self.frontend.vocab_size + d_encoder))
val = math.sqrt(3.0) * std # uniform bounds for std
self.embedding = nn.Embedding(
self.frontend.vocab_size,
2020-12-11 11:56:40 +08:00
d_encoder,
weight_attr=paddle.ParamAttr(initializer=nn.initializer.Uniform(
low=-val, high=val)))
self.encoder = Tacotron2Encoder(d_encoder, encoder_conv_layers,
encoder_kernel_size, p_encoder_dropout)
self.decoder = Tacotron2Decoder(
d_mels, reduction_factor, d_encoder, d_prenet, d_attention_rnn,
d_decoder_rnn, d_attention, attention_filters,
attention_kernel_size, p_prenet_dropout, p_attention_dropout,
p_decoder_dropout)
self.postnet = DecoderPostNet(
2020-12-17 10:56:45 +08:00
d_mels=d_mels * reduction_factor,
d_hidden=d_postnet,
kernel_size=postnet_kernel_size,
num_layers=postnet_conv_layers,
dropout=p_postnet_dropout)
def forward(self, text_inputs, mels, text_lens, output_lens=None):
2020-12-18 15:31:40 +08:00
"""Calculate forward propagation of tacotron2.
Parameters
----------
2020-12-18 15:50:05 +08:00
text_inputs: Tensor [shape=(B, T_text)]
Batch of the sequencees of padded character ids.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
mels: Tensor [shape(B, T_mel, C)]
Batch of the sequences of padded mel spectrogram.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
text_lens: Tensor [shape=(B,)]
Batch of lengths of each text input batch.
2020-12-18 15:31:40 +08:00
output_lens: Tensor [shape=(B,)], optional
Batch of lengths of each mels batch. Defaults to None.
2020-12-18 15:31:40 +08:00
Returns
-------
outputs : Dict[str, Tensor]
mel_output: output sequence of features (B, T_mel, C);
2020-12-18 15:31:40 +08:00
mel_outputs_postnet: output sequence of features after postnet (B, T_mel, C);
2020-12-18 15:31:40 +08:00
stop_logits: output sequence of stop logits (B, T_mel);
2020-12-18 15:31:40 +08:00
alignments: attention weights (B, T_mel, T_text).
2020-12-18 15:31:40 +08:00
"""
embedded_inputs = self.embedding(text_inputs)
encoder_outputs = self.encoder(embedded_inputs, text_lens)
mask = paddle.tensor.unsqueeze(
paddle.fluid.layers.sequence_mask(
x=text_lens, dtype=encoder_outputs.dtype), [-1])
mel_outputs, stop_logits, alignments = self.decoder(
encoder_outputs, mels, mask=mask)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
if output_lens is not None:
mask = paddle.tensor.unsqueeze(
paddle.fluid.layers.sequence_mask(x=output_lens),
[-1]) #[B, T, 1]
mel_outputs = mel_outputs * mask #[B, T, C]
mel_outputs_postnet = mel_outputs_postnet * mask #[B, T, C]
stop_logits = stop_logits * mask[:, :, 0] + (1 - mask[:, :, 0]
) * 1e3 #[B, T]
outputs = {
"mel_output": mel_outputs,
"mel_outputs_postnet": mel_outputs_postnet,
"stop_logits": stop_logits,
"alignments": alignments
}
return outputs
@paddle.no_grad()
def infer(self, text_inputs, stop_threshold=0.5, max_decoder_steps=1000):
2020-12-18 15:31:40 +08:00
"""Generate the mel sepctrogram of features given the sequences of character ids.
Parameters
----------
2020-12-18 15:50:05 +08:00
text_inputs: Tensor [shape=(B, T_text)]
Batch of the sequencees of padded character ids.
2020-12-18 15:31:40 +08:00
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
2020-12-18 15:31:40 +08:00
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
2020-12-18 15:31:40 +08:00
Returns
-------
outputs : Dict[str, Tensor]
mel_output: output sequence of sepctrogram (B, T_mel, C);
2020-12-18 15:31:40 +08:00
mel_outputs_postnet: output sequence of sepctrogram after postnet (B, T_mel, C);
2020-12-18 15:31:40 +08:00
stop_logits: output sequence of stop logits (B, T_mel);
2020-12-18 15:31:40 +08:00
alignments: attention weights (B, T_mel, T_text).
2020-12-18 15:31:40 +08:00
"""
embedded_inputs = self.embedding(text_inputs)
encoder_outputs = self.encoder(embedded_inputs)
mel_outputs, stop_logits, alignments = self.decoder.infer(
encoder_outputs,
stop_threshold=stop_threshold,
max_decoder_steps=max_decoder_steps)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
outputs = {
"mel_output": mel_outputs,
"mel_outputs_postnet": mel_outputs_postnet,
"stop_logits": stop_logits,
"alignments": alignments
}
return outputs
@paddle.no_grad()
def predict(self, text, stop_threshold=0.5, max_decoder_steps=1000):
2020-12-18 15:31:40 +08:00
"""Generate the mel sepctrogram of features given the sequenc of characters.
Parameters
----------
text: str
Sequence of characters.
2020-12-18 15:31:40 +08:00
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
2020-12-18 15:31:40 +08:00
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
2020-12-18 15:31:40 +08:00
Returns
-------
outputs : Dict[str, Tensor]
mel_outputs_postnet: output sequence of sepctrogram after postnet (T_mel, C);
2020-12-18 15:31:40 +08:00
alignments: attention weights (T_mel, T_text).
2020-12-18 15:31:40 +08:00
"""
ids = np.asarray(self.frontend(text))
ids = paddle.unsqueeze(paddle.to_tensor(ids, dtype='int64'), [0])
outputs = self.infer(ids, stop_threshold, max_decoder_steps)
return outputs['mel_outputs_postnet'][0].numpy(), outputs[
'alignments'][0].numpy()
@classmethod
def from_pretrained(cls, frontend, config, checkpoint_path):
2020-12-18 15:31:40 +08:00
"""Build a tacotron2 model from a pretrained model.
Parameters
----------
frontend: parakeet.frontend.Phonetics
Frontend used to preprocess text.
2020-12-18 15:31:40 +08:00
config: yacs.config.CfgNode
Model configs.
2020-12-18 15:31:40 +08:00
2020-12-18 20:28:21 +08:00
checkpoint_path: Path or str
The path of pretrained model checkpoint, without extension name.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 20:28:21 +08:00
Tacotron2
The model build from pretrined result.
2020-12-18 15:31:40 +08:00
"""
model = cls(frontend,
d_mels=config.data.d_mels,
d_encoder=config.model.d_encoder,
encoder_conv_layers=config.model.encoder_conv_layers,
encoder_kernel_size=config.model.encoder_kernel_size,
d_prenet=config.model.d_prenet,
d_attention_rnn=config.model.d_attention_rnn,
d_decoder_rnn=config.model.d_decoder_rnn,
attention_filters=config.model.attention_filters,
attention_kernel_size=config.model.attention_kernel_size,
d_attention=config.model.d_attention,
d_postnet=config.model.d_postnet,
postnet_kernel_size=config.model.postnet_kernel_size,
postnet_conv_layers=config.model.postnet_conv_layers,
reduction_factor=config.model.reduction_factor,
p_encoder_dropout=config.model.p_encoder_dropout,
p_prenet_dropout=config.model.p_prenet_dropout,
p_attention_dropout=config.model.p_attention_dropout,
p_decoder_dropout=config.model.p_decoder_dropout,
p_postnet_dropout=config.model.p_postnet_dropout)
checkpoint.load_parameters(model, checkpoint_path=checkpoint_path)
return model
class Tacotron2Loss(nn.Layer):
2020-12-18 15:31:40 +08:00
""" Tacotron2 Loss module
"""
def __init__(self):
super().__init__()
def forward(self, mel_outputs, mel_outputs_postnet, stop_logits,
mel_targets, stop_tokens):
2020-12-18 15:31:40 +08:00
"""Calculate tacotron2 loss.
Parameters
----------
2020-12-18 15:50:05 +08:00
mel_outputs: Tensor [shape=(B, T_mel, C)]
Output mel spectrogram sequence.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
mel_outputs_postnet: Tensor [shape(B, T_mel, C)]
Output mel spectrogram sequence after postnet.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
stop_logits: Tensor [shape=(B, T_mel)]
Output sequence of stop logits befor sigmoid.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
mel_targets: Tensor [shape=(B, T_mel, C)]
Target mel spectrogram sequence.
2020-12-18 15:31:40 +08:00
2020-12-18 15:50:05 +08:00
stop_tokens: Tensor [shape=(B,)]
Target stop token.
2020-12-18 15:31:40 +08:00
Returns
-------
2020-12-18 15:50:05 +08:00
losses : Dict[str, Tensor]
2020-12-18 15:31:40 +08:00
loss: the sum of the other three losses;
2020-12-18 15:31:40 +08:00
mel_loss: MSE loss compute by mel_targets and mel_outputs;
2020-12-18 15:31:40 +08:00
post_mel_loss: MSE loss compute by mel_targets and mel_outputs_postnet;
2020-12-18 15:31:40 +08:00
stop_loss: stop loss computed by stop_logits and stop token.
2020-12-18 15:31:40 +08:00
"""
mel_loss = paddle.nn.MSELoss()(mel_outputs, mel_targets)
post_mel_loss = paddle.nn.MSELoss()(mel_outputs_postnet, mel_targets)
stop_loss = paddle.nn.BCEWithLogitsLoss()(stop_logits, stop_tokens)
total_loss = mel_loss + post_mel_loss + stop_loss
losses = dict(
loss=total_loss,
mel_loss=mel_loss,
post_mel_loss=post_mel_loss,
stop_loss=stop_loss)
return losses