2020-10-10 15:51:54 +08:00
|
|
|
import math
|
|
|
|
import paddle
|
|
|
|
from paddle.nn import functional as F
|
|
|
|
|
2020-10-14 10:05:26 +08:00
|
|
|
def positional_encoding(start_index, length, size, dtype=None):
|
2020-10-10 15:51:54 +08:00
|
|
|
"""
|
|
|
|
Generate standard positional encoding.
|
|
|
|
|
|
|
|
pe(pos, 2i) = sin(pos / 10000 ** (2i / size))
|
|
|
|
pe(pos, 2i+1) = cos(pos / 10000 ** (2i / size))
|
|
|
|
|
|
|
|
This implementation deviates from the standard implementation in that the
|
|
|
|
sin/cos channels are not interleaved.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
start_index (int): the start index.
|
|
|
|
length (int): the length of the positional encoding.
|
|
|
|
size (int): positional encoding dimension.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
encodings (Tensor): shape(length, size), the positional encoding.
|
|
|
|
"""
|
|
|
|
if (size % 2 != 0):
|
|
|
|
raise ValueError("size should be divisible by 2")
|
2020-10-14 10:05:26 +08:00
|
|
|
dtype = dtype or paddle.get_default_dtype()
|
2020-10-10 15:51:54 +08:00
|
|
|
channel = paddle.arange(0, size, 2, dtype=dtype)
|
|
|
|
index = paddle.arange(start_index, start_index + length, 1, dtype=dtype)
|
|
|
|
p = paddle.unsqueeze(index, -1) / (10000 ** (channel / float(size)))
|
|
|
|
encodings = paddle.concat([paddle.sin(p), paddle.cos(p)], axis=-1)
|
|
|
|
return encodings
|
|
|
|
|
|
|
|
def scalable_positional_encoding(start_index, length, size, omega):
|
|
|
|
"""
|
|
|
|
A scalable positional encoding, which extends the standard positional
|
|
|
|
encoding by adding positioning rate (denoted as omega).
|
|
|
|
|
|
|
|
pe(pos, 2i) = sin(omega * pos / 10000 ** (2i / size))
|
|
|
|
pe(pos, 2i+1) = cos(omega * pos / 10000 ** (2i / size))
|
|
|
|
|
|
|
|
This implementation deviates from the standard implementation in that the
|
|
|
|
sin/cos channels are not interleaved.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
start_index (int): the start index.
|
|
|
|
length (int): the length of the positional encoding.
|
|
|
|
size (int): positional encoding dimension.
|
|
|
|
omgea (Tensor): shape(batch_size, ), positional rates.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
encodings: shape(batch_size, length, size), position embedding, the
|
|
|
|
data type is the same as omega.
|
|
|
|
"""
|
|
|
|
dtype = omega.dtype
|
|
|
|
index = paddle.arange(start_index, start_index + length, 1, dtype=dtype)
|
|
|
|
channel = paddle.arange(0, size, 2, dtype=dtype)
|
|
|
|
|
|
|
|
p = paddle.unsqueeze(omega, [1, 2]) \
|
|
|
|
* paddle.unsqueeze(index, [1]) \
|
|
|
|
/ (10000 ** (channel / float(size)))
|
|
|
|
|
|
|
|
encodings = paddle.concat([paddle.sin(p), paddle.cos(p)], axis=-1)
|
|
|
|
return encodings
|