40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import shutil
|
||
|
from pathlib import Path
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from paddle.optimizer import Adam
|
||
|
from paddle.optimizer.lr import StepDecay
|
||
|
|
||
|
|
||
|
def test_optimizer():
|
||
|
model1 = nn.Linear(3, 4)
|
||
|
optim1 = Adam(
|
||
|
parameters=model1.parameters(), learning_rate=StepDecay(0.1, 100))
|
||
|
|
||
|
output_dir = Path("temp_test_optimizer")
|
||
|
shutil.rmtree(output_dir, ignore_errors=True)
|
||
|
output_dir.mkdir(exist_ok=True, parents=True)
|
||
|
|
||
|
# model1.set_state_dict(model1.state_dict())
|
||
|
optim1.set_state_dict(optim1.state_dict())
|
||
|
|
||
|
x = paddle.randn([6, 3])
|
||
|
y = model1(x).sum()
|
||
|
y.backward()
|
||
|
optim1.step()
|