135 lines
4.6 KiB
Python
135 lines
4.6 KiB
Python
|
from network import *
|
||
|
from preprocess import batch_examples_postnet, LJSpeech
|
||
|
from tensorboardX import SummaryWriter
|
||
|
import os
|
||
|
from tqdm import tqdm
|
||
|
from parakeet.data.datacargo import DataCargo
|
||
|
from pathlib import Path
|
||
|
import jsonargparse
|
||
|
from parse import add_config_options_to_parser
|
||
|
from pprint import pprint
|
||
|
|
||
|
class MyDataParallel(dg.parallel.DataParallel):
|
||
|
"""
|
||
|
A data parallel proxy for model.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, layers, strategy):
|
||
|
super(MyDataParallel, self).__init__(layers, strategy)
|
||
|
|
||
|
def __getattr__(self, key):
|
||
|
if key in self.__dict__:
|
||
|
return object.__getattribute__(self, key)
|
||
|
elif key is "_layers":
|
||
|
return object.__getattribute__(self, "_sub_layers")["_layers"]
|
||
|
else:
|
||
|
return getattr(
|
||
|
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = jsonargparse.ArgumentParser(description="Train postnet model", formatter_class='default_argparse')
|
||
|
add_config_options_to_parser(parser)
|
||
|
cfg = parser.parse_args('-c ./config/train_postnet.yaml'.split())
|
||
|
|
||
|
local_rank = dg.parallel.Env().local_rank
|
||
|
|
||
|
if local_rank == 0:
|
||
|
# Print the whole config setting.
|
||
|
pprint(jsonargparse.namespace_to_dict(cfg))
|
||
|
|
||
|
LJSPEECH_ROOT = Path(cfg.data_path)
|
||
|
dataset = LJSpeech(LJSPEECH_ROOT)
|
||
|
dataloader = DataCargo(dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=batch_examples_postnet, drop_last=True)
|
||
|
|
||
|
global_step = 0
|
||
|
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||
|
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
||
|
if cfg.use_gpu else fluid.CPUPlace())
|
||
|
|
||
|
if not os.path.exists(cfg.log_dir):
|
||
|
os.mkdir(cfg.log_dir)
|
||
|
path = os.path.join(cfg.log_dir,'postnet')
|
||
|
writer = SummaryWriter(path)
|
||
|
|
||
|
with dg.guard(place):
|
||
|
# dataloader
|
||
|
input_fields = {
|
||
|
'names': ['mel', 'mag'],
|
||
|
'shapes':
|
||
|
[[cfg.batch_size, None, 80], [cfg.batch_size, None, 257]],
|
||
|
'dtypes': ['float32', 'float32'],
|
||
|
'lod_levels': [0, 0]
|
||
|
}
|
||
|
|
||
|
inputs = [
|
||
|
fluid.data(
|
||
|
name=input_fields['names'][i],
|
||
|
shape=input_fields['shapes'][i],
|
||
|
dtype=input_fields['dtypes'][i],
|
||
|
lod_level=input_fields['lod_levels'][i])
|
||
|
for i in range(len(input_fields['names']))
|
||
|
]
|
||
|
|
||
|
reader = fluid.io.DataLoader.from_generator(
|
||
|
feed_list=inputs,
|
||
|
capacity=32,
|
||
|
iterable=True,
|
||
|
use_double_buffer=True,
|
||
|
return_list=True)
|
||
|
|
||
|
|
||
|
model = ModelPostNet('postnet', cfg)
|
||
|
|
||
|
model.train()
|
||
|
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(4000 *( cfg.lr ** 2)), 4000))
|
||
|
|
||
|
if cfg.checkpoint_path is not None:
|
||
|
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path)
|
||
|
model.set_dict(model_dict)
|
||
|
optimizer.set_dict(opti_dict)
|
||
|
print("load checkpoint!!!")
|
||
|
|
||
|
if cfg.use_data_parallel:
|
||
|
strategy = dg.parallel.prepare_context()
|
||
|
model = MyDataParallel(model, strategy)
|
||
|
|
||
|
for epoch in range(cfg.epochs):
|
||
|
reader.set_batch_generator(dataloader, place)
|
||
|
pbar = tqdm(reader())
|
||
|
for i, data in enumerate(pbar):
|
||
|
pbar.set_description('Processing at epoch %d'%epoch)
|
||
|
mel, mag = data
|
||
|
mag = dg.to_variable(mag.numpy())
|
||
|
mel = dg.to_variable(mel.numpy())
|
||
|
global_step += 1
|
||
|
|
||
|
mag_pred = model(mel)
|
||
|
|
||
|
loss = layers.mean(layers.abs(layers.elementwise_sub(mag_pred, mag)))
|
||
|
if cfg.use_data_parallel:
|
||
|
loss = model.scale_loss(loss)
|
||
|
|
||
|
writer.add_scalars('training_loss',{
|
||
|
'loss':loss.numpy(),
|
||
|
}, global_step)
|
||
|
|
||
|
loss.backward()
|
||
|
if cfg.use_data_parallel:
|
||
|
model.apply_collective_grads()
|
||
|
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
||
|
model.clear_gradients()
|
||
|
|
||
|
if global_step % cfg.save_step == 0:
|
||
|
if not os.path.exists(cfg.save_path):
|
||
|
os.mkdir(cfg.save_path)
|
||
|
save_path = os.path.join(cfg.save_path,'postnet/%d' % global_step)
|
||
|
dg.save_dygraph(model.state_dict(), save_path)
|
||
|
dg.save_dygraph(optimizer.state_dict(), save_path)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|