PaddlePaddle dynamic graph implementation of TransformerTTS, a neural TTS with Transformer. The implementation is based on [Neural Speech Synthesis with Transformer Network](https://arxiv.org/abs/1809.08895).
The model adopts the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in [Tacotron2](https://arxiv.org/abs/1712.05884). The model consists of two main parts, encoder and decoder. We also implement the CBHG model of Tacotron as the vocoder part and convert the spectrogram into raw wave using Griffin-Lim algorithm.
- If `--checkpoint` is provided, the checkpoint specified by `--checkpoint` is loaded.
- If `--checkpoint` is not provided, we try to load the checkpoint of the target step specified by `--iteration` from the `${output}/checkpoints/` directory, e.g. if given `--iteration 120000`, the checkpoint `${output}/checkpoints/step-120000.*` will be load.
- If both `--checkpoint` and `--iteration` are not provided, we try to load the latest checkpoint from `${output}/checkpoints/` directory.
**Note: In order to ensure the training effect, we recommend using multi-GPU training to enlarge the batch size, and at least 16 samples in single batch per GPU.**
We currently support two vocoders, ``griffinlim`` and ``waveflow``. You can set ``--vocoder`` to use one of them. If you want to use ``waveflow`` as your vocoder, you need to set ``--config_vocoder`` and ``--checkpoint_vocoder`` which are the path of the config and checkpoint of vocoder. You can download the pretrain model of ``waveflow`` from [here](https://github.com/PaddlePaddle/Parakeet#vocoders).