ParakeetRebeccaRosario/examples/transformer_tts/ljspeech.py

106 lines
3.6 KiB
Python
Raw Normal View History

2020-12-20 13:15:07 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import pickle
import numpy as np
from paddle.io import Dataset, DataLoader
from parakeet.data.batch import batch_spec, batch_text_id
from parakeet.data import dataset
2020-12-20 13:15:07 +08:00
class LJSpeech(Dataset):
"""A simple dataset adaptor for the processed ljspeech dataset."""
2020-12-20 13:15:07 +08:00
def __init__(self, root):
self.root = Path(root).expanduser()
records = []
with open(self.root / "metadata.pkl", 'rb') as f:
metadata = pickle.load(f)
for mel_name, text, phonemes, ids in metadata:
mel_name = self.root / "mel" / (mel_name + ".npy")
records.append((mel_name, text, phonemes, ids))
self.records = records
def __getitem__(self, i):
mel_name, _, _, ids = self.records[i]
mel = np.load(mel_name)
return ids, mel
def __len__(self):
return len(self.records)
# decorate mel & create stop probability
class Transform(object):
def __init__(self, start_value, end_value):
self.start_value = start_value
self.end_value = end_value
def __call__(self, example):
2020-12-20 13:15:07 +08:00
ids, mel = example # ids already have <s> and </s>
ids = np.array(ids, dtype=np.int64)
# add start and end frame
2020-12-20 13:15:07 +08:00
mel = np.pad(
mel, [(0, 0), (1, 1)],
mode='constant',
constant_values=[(0, 0), (self.start_value, self.end_value)])
stop_labels = np.ones([mel.shape[1]], dtype=np.int64)
stop_labels[-1] = 2
# actually this thing can also be done within the model
return ids, mel, stop_labels
class LJSpeechCollector(object):
"""A simple callable to batch LJSpeech examples."""
2020-12-20 13:15:07 +08:00
def __init__(self, padding_idx=0, padding_value=0.):
self.padding_idx = padding_idx
self.padding_value = padding_value
def __call__(self, examples):
ids = [example[0] for example in examples]
mels = [example[1] for example in examples]
stop_probs = [example[2] for example in examples]
ids = batch_text_id(ids, pad_id=self.padding_idx)
mels = batch_spec(mels, pad_value=self.padding_value)
stop_probs = batch_text_id(stop_probs, pad_id=self.padding_idx)
return ids, np.transpose(mels, [0, 2, 1]), stop_probs
def create_dataloader(config, source_path):
lj = LJSpeech(source_path)
2020-12-20 13:15:07 +08:00
transform = Transform(config.data.mel_start_value,
config.data.mel_end_value)
lj = dataset.TransformDataset(lj, transform)
valid_set, train_set = dataset.split(lj, config.data.valid_size)
data_collator = LJSpeechCollector(padding_idx=config.data.padding_idx)
train_loader = DataLoader(
2020-12-20 13:15:07 +08:00
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator)
valid_loader = DataLoader(
valid_set,
batch_size=config.data.batch_size,
shuffle=False,
drop_last=False,
collate_fn=data_collator)
return train_loader, valid_loader