Merge branch 'master' of upstream.

This commit is contained in:
chenfeiyu 2020-03-09 03:06:53 +00:00
commit 02f742d914
37 changed files with 1083 additions and 118 deletions

View File

@ -3,8 +3,8 @@ audio:
n_fft: 2048
sr: 22050
preemphasis: 0.97
hop_length: 275
win_length: 1102
hop_length: 256
win_length: 1024
power: 1.2
min_level_db: -100
ref_level_db: 20

View File

@ -52,6 +52,12 @@ def add_config_options_to_parser(parser):
type=int,
default=0,
help="use data parallel or not during training.")
parser.add_argument(
'--alpha',
type=float,
default=1.0,
help="The hyperparameter to determine the length of the expanded sequence \
mel, thereby controlling the voice speed.")
parser.add_argument(
'--data_path',

View File

@ -24,6 +24,7 @@ import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet import audio
from parakeet.models.fastspeech.fastspeech import FastSpeech
from parakeet.models.transformer_tts.utils import *
def load_checkpoint(step, model_path):
@ -59,12 +60,26 @@ def synthesis(text_input, args):
model.eval()
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text), [0])
text = np.expand_dims(text, axis=0)
pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])
pos_text = np.expand_dims(pos_text, axis=0)
enc_non_pad_mask = get_non_pad_mask(pos_text).astype(np.float32)
enc_slf_attn_mask = get_attn_key_pad_mask(pos_text,
text).astype(np.float32)
text = dg.to_variable(text)
pos_text = dg.to_variable(pos_text)
enc_non_pad_mask = dg.to_variable(enc_non_pad_mask)
enc_slf_attn_mask = dg.to_variable(enc_slf_attn_mask)
mel_output, mel_output_postnet = model(
text, pos_text, alpha=args.alpha)
text,
pos_text,
alpha=args.alpha,
enc_non_pad_mask=enc_non_pad_mask,
enc_slf_attn_mask=enc_slf_attn_mask,
dec_non_pad_mask=None,
dec_slf_attn_mask=None)
_ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'],

View File

@ -21,6 +21,7 @@ from parse import add_config_options_to_parser
from pprint import pprint
from ruamel import yaml
from tqdm import tqdm
from matplotlib import cm
from collections import OrderedDict
from tensorboardX import SummaryWriter
import paddle.fluid.dygraph as dg
@ -66,12 +67,12 @@ def main(args):
with dg.guard(place):
with fluid.unique_name.guard():
transformerTTS = TransformerTTS(cfg)
transformer_tts = TransformerTTS(cfg)
model_dict, _ = load_checkpoint(
str(args.transformer_step),
os.path.join(args.transtts_path, "transformer"))
transformerTTS.set_dict(model_dict)
transformerTTS.eval()
transformer_tts.set_dict(model_dict)
transformer_tts.eval()
model = FastSpeech(cfg)
model.train()
@ -100,13 +101,33 @@ def main(args):
for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch)
character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens = data
(character, mel, mel_input, pos_text, pos_mel, text_length,
mel_lens, enc_slf_mask, enc_query_mask, dec_slf_mask,
enc_dec_mask, dec_query_slf_mask, dec_query_mask) = data
_, _, attn_probs, _, _, _ = transformerTTS(
character, mel_input, pos_text, pos_mel)
alignment = dg.to_variable(
get_alignment(attn_probs, mel_lens, cfg[
'transformer_head'])).astype(np.float32)
_, _, attn_probs, _, _, _ = transformer_tts(
character,
mel_input,
pos_text,
pos_mel,
dec_slf_mask=dec_slf_mask,
enc_slf_mask=enc_slf_mask,
enc_query_mask=enc_query_mask,
enc_dec_mask=enc_dec_mask,
dec_query_slf_mask=dec_query_slf_mask,
dec_query_mask=dec_query_mask)
alignment, max_attn = get_alignment(attn_probs, mel_lens,
cfg['transformer_head'])
alignment = dg.to_variable(alignment).astype(np.float32)
if local_rank == 0 and global_step % 5 == 1:
x = np.uint8(
cm.viridis(max_attn[8, :mel_lens.numpy()[8]]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
0,
dataformats="HWC")
global_step += 1
@ -115,7 +136,11 @@ def main(args):
character,
pos_text,
mel_pos=pos_mel,
length_target=alignment)
length_target=alignment,
enc_non_pad_mask=enc_query_mask,
enc_slf_attn_mask=enc_slf_mask,
dec_non_pad_mask=dec_query_slf_mask,
dec_slf_attn_mask=dec_slf_mask)
mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
mel_loss = layers.mse_loss(mel_output, mel)
mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)

View File

@ -1,6 +1,6 @@
# train model
# if you wish to resume from an exists model, uncomment --checkpoint_path and --fastspeech_step
CUDA_VISIBLE_DEVICES=0\
export CUDA_VISIBLE_DEVICES=0
python -u train.py \
--batch_size=32 \
--epochs=10000 \

View File

@ -9,3 +9,6 @@ audio:
min_level_db: -100
ref_level_db: 20
outputs_per_step: 1
hidden_size: 256
embedding_size: 512

View File

@ -23,7 +23,8 @@ from parakeet import audio
from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, SpecBatcher
from parakeet.data.dataset import DatasetMixin, TransformDataset
from parakeet.data.dataset import DatasetMixin, TransformDataset, CacheDataset
from parakeet.models.transformer_tts.utils import *
class LJSpeechLoader:
@ -40,6 +41,8 @@ class LJSpeechLoader:
metadata = LJSpeechMetaData(LJSPEECH_ROOT)
transformer = LJSpeech(config)
dataset = TransformDataset(metadata, transformer)
dataset = CacheDataset(dataset)
sampler = DistributedSampler(
len(metadata), nranks, rank, shuffle=shuffle)
@ -196,8 +199,18 @@ def batch_examples(batch):
SpecBatcher(pad_value=0.)(mels), axes=(0, 2, 1)) #(B,T,num_mels)
mel_inputs = np.transpose(
SpecBatcher(pad_value=0.)(mel_inputs), axes=(0, 2, 1)) #(B,T,num_mels)
enc_slf_mask = get_attn_key_pad_mask(pos_texts, texts).astype(np.float32)
enc_query_mask = get_non_pad_mask(pos_texts).astype(np.float32)
dec_slf_mask = get_dec_attn_key_pad_mask(pos_mels,
mel_inputs).astype(np.float32)
enc_dec_mask = get_attn_key_pad_mask(enc_query_mask[:, :, 0],
mel_inputs).astype(np.float32)
dec_query_slf_mask = get_non_pad_mask(pos_mels).astype(np.float32)
dec_query_mask = get_non_pad_mask(pos_mels).astype(np.float32)
return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens),
np.array(mel_lens))
np.array(mel_lens), enc_slf_mask, enc_query_mask, dec_slf_mask,
enc_dec_mask, dec_query_slf_mask, dec_query_mask)
def batch_examples_vocoder(batch):

View File

@ -16,6 +16,7 @@ from scipy.io.wavfile import write
from parakeet.g2p.en import text_to_sequence
import numpy as np
from tqdm import tqdm
from matplotlib import cm
from tensorboardX import SummaryWriter
from ruamel import yaml
import paddle.fluid as fluid
@ -25,6 +26,7 @@ import argparse
from parse import add_config_options_to_parser
from pprint import pprint
from collections import OrderedDict
from parakeet.models.transformer_tts.utils import *
from parakeet import audio
from parakeet.models.transformer_tts.vocoder import Vocoder
from parakeet.models.transformer_tts.transformer_tts import TransformerTTS
@ -78,14 +80,18 @@ def synthesis(text_input, args):
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])
pbar = tqdm(range(args.max_len))
for i in pbar:
dec_slf_mask = get_triu_tensor(
mel_input.numpy(), mel_input.numpy()).astype(np.float32)
dec_slf_mask = fluid.layers.cast(
dg.to_variable(dec_slf_mask == 0), np.float32)
pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel)
text, mel_input, pos_text, pos_mel, dec_slf_mask)
mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1)
mag_pred = model_vocoder(postnet_pred)
_ljspeech_processor = audio.AudioProcessor(
@ -111,6 +117,33 @@ def synthesis(text_input, args):
wav = _ljspeech_processor.inv_spectrogram(
fluid.layers.transpose(
fluid.layers.squeeze(mag_pred, [0]), [1, 0]).numpy())
global_step = 0
for i, prob in enumerate(attn_probs):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
for i, prob in enumerate(attn_enc):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_enc_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
for i, prob in enumerate(attn_dec):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_dec_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
writer.add_audio(text_input, wav, 0, cfg['audio']['sr'])
if not os.path.exists(args.sample_path):
os.mkdir(args.sample_path)
@ -124,4 +157,6 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Synthesis model")
add_config_options_to_parser(parser)
args = parser.parse_args()
synthesis("Transformer model is so fast!", args)
synthesis(
"They emphasized the necessity that the information now being furnished be handled with judgment and care.",
args)

View File

@ -2,10 +2,10 @@
# train model
CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \
--max_len=50 \
--max_len=600 \
--transformer_step=160000 \
--vocoder_step=70000 \
--use_gpu=1
--vocoder_step=90000 \
--use_gpu=1 \
--checkpoint_path='./checkpoint' \
--log_dir='./log' \
--sample_path='./sample' \

View File

@ -14,7 +14,7 @@
import os
from tqdm import tqdm
from tensorboardX import SummaryWriter
from pathlib import Path
#from pathlib import Path
from collections import OrderedDict
import argparse
from parse import add_config_options_to_parser
@ -89,21 +89,31 @@ def main(args):
pbar = tqdm(reader)
for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch)
character, mel, mel_input, pos_text, pos_mel, text_length, _ = data
character, mel, mel_input, pos_text, pos_mel, text_length, _, enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask = data
global_step += 1
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
character, mel_input, pos_text, pos_mel)
label = (pos_mel == 0).astype(np.float32)
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
character,
mel_input,
pos_text,
pos_mel,
dec_slf_mask=dec_slf_mask,
enc_slf_mask=enc_slf_mask,
enc_query_mask=enc_query_mask,
enc_dec_mask=enc_dec_mask,
dec_query_slf_mask=dec_query_slf_mask,
dec_query_mask=dec_query_mask)
mel_loss = layers.mean(
layers.abs(layers.elementwise_sub(mel_pred, mel)))
post_mel_loss = layers.mean(
layers.abs(layers.elementwise_sub(postnet_pred, mel)))
loss = mel_loss + post_mel_loss
# Note: When used stop token loss the learning did not work.
if args.stop_token:
label = (pos_mel == 0).astype(np.float32)
stop_loss = cross_entropy(stop_preds, label)
loss = loss + stop_loss

View File

@ -1,7 +1,7 @@
# train model
# if you wish to resume from an exists model, uncomment --checkpoint_path and --transformer_step
CUDA_VISIBLE_DEVICES=0 \
export CUDA_VISIBLE_DEVICES=2
python -u train_transformer.py \
--batch_size=32 \
--epochs=10000 \

View File

@ -99,7 +99,7 @@ python -u synthesis.py \
--sigma=1.0
```
In this example, `--output` specifies where to save the synthesized audios and `--sample` specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset.
In this example, `--output` specifies where to save the synthesized audios and `--sample` (<16) specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset.
### Benchmarking

View File

@ -109,6 +109,16 @@ def add_yaml_config(config):
def load_latest_checkpoint(checkpoint_dir, rank=0):
"""Get the iteration number corresponding to the latest saved checkpoint
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
rank (int, optional): the rank of the process in multi-process setting.
Defaults to 0.
Returns:
int: the latest iteration number.
"""
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
# Create checkpoint index file if not exist.
if (not os.path.isfile(checkpoint_path)) and rank == 0:
@ -129,6 +139,15 @@ def load_latest_checkpoint(checkpoint_dir, rank=0):
def save_latest_checkpoint(checkpoint_dir, iteration):
"""Save the iteration number of the latest model to be checkpointed.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
iteration (int): the latest iteration number.
Returns:
None
"""
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
# Update the latest checkpoint index.
with open(checkpoint_path, "w") as handle:
@ -142,6 +161,24 @@ def load_parameters(checkpoint_dir,
iteration=None,
file_path=None,
dtype="float32"):
"""Load a specific model checkpoint from disk.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
rank (int): the rank of the process in multi-process setting.
model (obj): model to load parameters.
optimizer (obj, optional): optimizer to load states if needed.
Defaults to None.
iteration (int, optional): if specified, load the specific checkpoint,
if not specified, load the latest one. Defaults to None.
file_path (str, optional): if specified, load the checkpoint
stored in the file_path. Defaults to None.
dtype (str, optional): precision of the model parameters.
Defaults to float32.
Returns:
None
"""
if file_path is None:
if iteration is None:
iteration = load_latest_checkpoint(checkpoint_dir, rank)
@ -165,6 +202,18 @@ def load_parameters(checkpoint_dir,
def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None):
"""Checkpoint the latest trained model parameters.
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
iteration (int): the latest iteration number.
model (obj): model to be checkpointed.
optimizer (obj, optional): optimizer to be checkpointed.
Defaults to None.
Returns:
None
"""
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
model_dict = model.state_dict()
dg.save_dygraph(model_dict, file_path)

View File

@ -14,6 +14,7 @@
import six
import numpy as np
from tqdm import tqdm
class DatasetMixin(object):

View File

@ -32,6 +32,7 @@ class Decoder(dg.Layer):
super(Decoder, self).__init__()
n_position = len_max_seq + 1
self.n_head = n_head
self.pos_inp = get_sinusoid_encoding_table(
n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding(
@ -55,7 +56,7 @@ class Decoder(dg.Layer):
for i, layer in enumerate(self.layer_stack):
self.add_sublayer('fft_{}'.format(i), layer)
def forward(self, enc_seq, enc_pos):
def forward(self, enc_seq, enc_pos, non_pad_mask, slf_attn_mask=None):
"""
Decoder layer of FastSpeech.
@ -69,10 +70,7 @@ class Decoder(dg.Layer):
dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
"""
dec_slf_attn_list = []
# -- Prepare masks
slf_attn_mask = get_attn_key_pad_mask(seq_k=enc_pos, seq_q=enc_pos)
non_pad_mask = get_non_pad_mask(enc_pos)
slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1])
# -- Forward
dec_output = enc_seq + self.position_enc(enc_pos)

View File

@ -32,14 +32,17 @@ class Encoder(dg.Layer):
dropout=0.1):
super(Encoder, self).__init__()
n_position = len_max_seq + 1
self.n_head = n_head
self.src_word_emb = dg.Embedding(
size=[n_src_vocab, d_model], padding_idx=0)
size=[n_src_vocab, d_model],
padding_idx=0,
param_attr=fluid.initializer.Normal(
loc=0.0, scale=1.0))
self.pos_inp = get_sinusoid_encoding_table(
n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding(
size=[n_position, d_model],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
self.pos_inp),
@ -58,7 +61,7 @@ class Encoder(dg.Layer):
for i, layer in enumerate(self.layer_stack):
self.add_sublayer('fft_{}'.format(i), layer)
def forward(self, character, text_pos):
def forward(self, character, text_pos, non_pad_mask, slf_attn_mask=None):
"""
Encoder layer of FastSpeech.
@ -74,10 +77,7 @@ class Encoder(dg.Layer):
enc_slf_attn_list (list<Variable>), Len(n_layers), Shape(B * n_head, text_T, text_T), the encoder self attention list.
"""
enc_slf_attn_list = []
# -- prepare masks
# shape character (N, T)
slf_attn_mask = get_attn_key_pad_mask(seq_k=character, seq_q=character)
non_pad_mask = get_non_pad_mask(character)
slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1])
# -- Forward
enc_output = self.src_word_emb(character) + self.position_enc(
@ -90,4 +90,4 @@ class Encoder(dg.Layer):
slf_attn_mask=slf_attn_mask)
enc_slf_attn_list += [enc_slf_attn]
return enc_output, non_pad_mask, enc_slf_attn_list
return enc_output, enc_slf_attn_list

View File

@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols
from parakeet.models.transformer_tts.utils import *
from parakeet.models.transformer_tts.post_convnet import PostConvNet
from parakeet.models.fastspeech.length_regulator import LengthRegulator
from parakeet.models.fastspeech.encoder import Encoder
@ -78,6 +80,10 @@ class FastSpeech(dg.Layer):
def forward(self,
character,
text_pos,
enc_non_pad_mask,
dec_non_pad_mask,
enc_slf_attn_mask=None,
dec_slf_attn_mask=None,
mel_pos=None,
length_target=None,
alpha=1.0):
@ -106,14 +112,20 @@ class FastSpeech(dg.Layer):
dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
"""
encoder_output, non_pad_mask, enc_slf_attn_list = self.encoder(
character, text_pos)
encoder_output, enc_slf_attn_list = self.encoder(
character,
text_pos,
enc_non_pad_mask,
slf_attn_mask=enc_slf_attn_mask)
if fluid.framework._dygraph_tracer()._train_mode:
length_regulator_output, duration_predictor_output = self.length_regulator(
encoder_output, target=length_target, alpha=alpha)
decoder_output, dec_slf_attn_list = self.decoder(
length_regulator_output, mel_pos)
length_regulator_output,
mel_pos,
dec_non_pad_mask,
slf_attn_mask=dec_slf_attn_mask)
mel_output = self.mel_linear(decoder_output)
mel_output_postnet = self.postnet(mel_output) + mel_output
@ -122,8 +134,18 @@ class FastSpeech(dg.Layer):
else:
length_regulator_output, decoder_pos = self.length_regulator(
encoder_output, alpha=alpha)
decoder_output, _ = self.decoder(length_regulator_output,
decoder_pos)
slf_attn_mask = get_triu_tensor(
decoder_pos.numpy(), decoder_pos.numpy()).astype(np.float32)
slf_attn_mask = fluid.layers.cast(
dg.to_variable(slf_attn_mask == 0), np.float32)
slf_attn_mask = dg.to_variable(slf_attn_mask)
dec_non_pad_mask = fluid.layers.unsqueeze(
(decoder_pos != 0).astype(np.float32), [-1])
decoder_output, _ = self.decoder(
length_regulator_output,
decoder_pos,
dec_non_pad_mask,
slf_attn_mask=slf_attn_mask)
mel_output = self.mel_linear(decoder_output)
mel_output_postnet = self.postnet(mel_output) + mel_output

View File

@ -46,7 +46,7 @@ class FFTBlock(dg.Layer):
padding=padding,
dropout=dropout)
def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None):
def forward(self, enc_input, non_pad_mask, slf_attn_mask=None):
"""
Feed Forward Transformer block in FastSpeech.
@ -63,6 +63,7 @@ class FFTBlock(dg.Layer):
"""
output, slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
output *= non_pad_mask
output = self.pos_ffn(output)

View File

@ -146,11 +146,17 @@ class DurationPredictor(dg.Layer):
out = layers.transpose(encoder_output, [0, 2, 1])
out = self.conv1(out)
out = layers.transpose(out, [0, 2, 1])
out = layers.dropout(layers.relu(self.layer_norm1(out)), self.dropout)
out = layers.dropout(
layers.relu(self.layer_norm1(out)),
self.dropout,
dropout_implementation='upscale_in_train')
out = layers.transpose(out, [0, 2, 1])
out = self.conv2(out)
out = layers.transpose(out, [0, 2, 1])
out = layers.dropout(layers.relu(self.layer_norm2(out)), self.dropout)
out = layers.dropout(
layers.relu(self.layer_norm2(out)),
self.dropout,
dropout_implementation='upscale_in_train')
out = layers.relu(self.linear(out))
out = layers.squeeze(out, axes=[-1])

View File

@ -18,7 +18,6 @@ def get_alignment(attn_probs, mel_lens, n_head):
max_F = 0
assert attn_probs[0].shape[0] % n_head == 0
batch_size = int(attn_probs[0].shape[0] // n_head)
#max_attn = attn_probs[0].numpy()[0,batch_size]
for i in range(len(attn_probs)):
multi_attn = attn_probs[i].numpy()
for j in range(n_head):
@ -28,7 +27,7 @@ def get_alignment(attn_probs, mel_lens, n_head):
max_F = F
max_attn = attn
alignment = compute_duration(max_attn, mel_lens)
return alignment
return alignment, max_attn
def score_F(attn):

View File

@ -14,7 +14,7 @@
import math
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.modules.utils import *
from parakeet.models.transformer_tts.utils import *
from parakeet.modules.multihead_attention import MultiheadAttention
from parakeet.modules.ffn import PositionwiseFeedForward
from parakeet.models.transformer_tts.prenet import PreNet
@ -25,6 +25,7 @@ class Decoder(dg.Layer):
def __init__(self, num_hidden, config, num_head=4):
super(Decoder, self).__init__()
self.num_hidden = num_hidden
self.num_head = num_head
param = fluid.ParamAttr()
self.alpha = self.create_parameter(
shape=(1, ),
@ -98,28 +99,27 @@ class Decoder(dg.Layer):
outputs_per_step=config['audio']['outputs_per_step'],
use_cudnn=True)
def forward(self, key, value, query, c_mask, positional):
def forward(self,
key,
value,
query,
positional,
mask,
m_mask=None,
m_self_mask=None,
zero_mask=None):
# get decoder mask with triangular matrix
if fluid.framework._dygraph_tracer()._train_mode:
m_mask = get_non_pad_mask(positional)
mask = get_attn_key_pad_mask((positional == 0).astype(np.float32),
query)
triu_tensor = dg.to_variable(
get_triu_tensor(query.numpy(), query.numpy())).astype(
np.float32)
mask = mask + triu_tensor
mask = fluid.layers.cast(mask == 0, np.float32)
m_mask = layers.expand(m_mask, [self.num_head, 1, key.shape[1]])
m_self_mask = layers.expand(m_self_mask,
[self.num_head, 1, query.shape[1]])
mask = layers.expand(mask, [self.num_head, 1, 1])
zero_mask = layers.expand(zero_mask, [self.num_head, 1, 1])
# (batch_size, decoder_len, encoder_len)
zero_mask = get_attn_key_pad_mask(
layers.squeeze(c_mask, [-1]), query)
else:
mask = get_triu_tensor(query.numpy(),
query.numpy()).astype(np.float32)
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
m_mask, zero_mask = None, None
m_mask, m_self_mask, zero_mask = None, None, None
# Decoder pre-network
query = self.decoder_prenet(query)
@ -132,7 +132,8 @@ class Decoder(dg.Layer):
query = positional * self.alpha + query
#positional dropout
query = fluid.layers.dropout(query, 0.1)
query = fluid.layers.dropout(
query, 0.1, dropout_implementation='upscale_in_train')
# Attention decoder-decoder, encoder-decoder
selfattn_list = list()
@ -141,12 +142,13 @@ class Decoder(dg.Layer):
for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers,
self.ffns):
query, attn_dec = selfattn(
query, query, query, mask=mask, query_mask=m_mask)
query, query, query, mask=mask, query_mask=m_self_mask)
query, attn_dot = attn(
key, value, query, mask=zero_mask, query_mask=m_mask)
query = ffn(query)
selfattn_list.append(attn_dec)
attn_list.append(attn_dot)
# Mel linear projection
mel_out = self.mel_linear(query)
# Post Mel Network

View File

@ -23,6 +23,7 @@ class Encoder(dg.Layer):
def __init__(self, embedding_size, num_hidden, num_head=4):
super(Encoder, self).__init__()
self.num_hidden = num_hidden
self.num_head = num_head
param = fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=1.0))
self.alpha = self.create_parameter(
@ -31,7 +32,6 @@ class Encoder(dg.Layer):
1024, self.num_hidden, padding_idx=0)
self.pos_emb = dg.Embedding(
size=[1024, num_hidden],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
self.pos_inp),
@ -56,13 +56,15 @@ class Encoder(dg.Layer):
for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer)
def forward(self, x, positional):
def forward(self, x, positional, mask=None, query_mask=None):
if fluid.framework._dygraph_tracer()._train_mode:
query_mask = get_non_pad_mask(positional)
mask = get_attn_key_pad_mask(positional, x)
seq_len_key = x.shape[1]
query_mask = layers.expand(query_mask,
[self.num_head, 1, seq_len_key])
mask = layers.expand(mask, [self.num_head, 1, 1])
else:
query_mask, mask = None, None
# Encoder pre_network
x = self.encoder_prenet(x) #(N,T,C)
@ -72,7 +74,7 @@ class Encoder(dg.Layer):
x = positional * self.alpha + x #(N, T, C)
# Positional dropout
x = layers.dropout(x, 0.1)
x = layers.dropout(x, 0.1, dropout_implementation='upscale_in_train')
# Self attention encoder
attentions = list()
@ -81,4 +83,4 @@ class Encoder(dg.Layer):
x = ffn(x)
attentions.append(attention)
return x, query_mask, attentions
return x, attentions

View File

@ -27,7 +27,10 @@ class EncoderPrenet(dg.Layer):
self.num_hidden = num_hidden
self.use_cudnn = use_cudnn
self.embedding = dg.Embedding(
size=[len(symbols), embedding_size], padding_idx=None)
size=[len(symbols), embedding_size],
padding_idx=0,
param_attr=fluid.initializer.Normal(
loc=0.0, scale=1.0))
self.conv_list = []
k = math.sqrt(1 / embedding_size)
self.conv_list.append(
@ -78,10 +81,14 @@ class EncoderPrenet(dg.Layer):
low=-k, high=k)))
def forward(self, x):
x = self.embedding(x) #(batch_size, seq_len, embending_size)
x = layers.transpose(x, [0, 2, 1])
for batch_norm, conv in zip(self.batch_norm_list, self.conv_list):
x = layers.dropout(layers.relu(batch_norm(conv(x))), 0.2)
x = layers.dropout(
layers.relu(batch_norm(conv(x))),
0.2,
dropout_implementation='upscale_in_train')
x = layers.transpose(x, [0, 2, 1]) #(N,T,C)
x = self.projection(x)

View File

@ -108,11 +108,16 @@ class PostConvNet(dg.Layer):
conv = self.conv_list[i]
input = layers.dropout(
layers.tanh(batch_norm(conv(input)[:, :, :len])), self.dropout)
layers.tanh(batch_norm(conv(input)[:, :, :len])),
self.dropout,
dropout_implementation='upscale_in_train')
conv = self.conv_list[self.num_conv - 1]
input = conv(input)[:, :, :len]
if self.batchnorm_last:
batch_norm = self.batch_norm_list[self.num_conv - 1]
input = layers.dropout(batch_norm(input), self.dropout)
input = layers.dropout(
batch_norm(input),
self.dropout,
dropout_implementation='upscale_in_train')
output = layers.transpose(input, [0, 2, 1])
return output

View File

@ -56,6 +56,12 @@ class PreNet(dg.Layer):
Returns:
x (Variable), Shape(B, T, C), the result after pernet.
"""
x = layers.dropout(layers.relu(self.linear1(x)), self.dropout_rate)
x = layers.dropout(layers.relu(self.linear2(x)), self.dropout_rate)
x = layers.dropout(
layers.relu(self.linear1(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
x = layers.dropout(
layers.relu(self.linear2(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
return x

View File

@ -24,11 +24,29 @@ class TransformerTTS(dg.Layer):
self.decoder = Decoder(config['hidden_size'], config)
self.config = config
def forward(self, characters, mel_input, pos_text, pos_mel):
key, c_mask, attns_enc = self.encoder(characters, pos_text)
def forward(self,
characters,
mel_input,
pos_text,
pos_mel,
dec_slf_mask,
enc_slf_mask=None,
enc_query_mask=None,
enc_dec_mask=None,
dec_query_slf_mask=None,
dec_query_mask=None):
key, attns_enc = self.encoder(
characters, pos_text, mask=enc_slf_mask, query_mask=enc_query_mask)
mel_output, postnet_output, attn_probs, stop_preds, attns_dec = self.decoder(
key, key, mel_input, c_mask, pos_mel)
key,
key,
mel_input,
pos_mel,
mask=dec_slf_mask,
zero_mask=enc_dec_mask,
m_self_mask=dec_query_slf_mask,
m_mask=dec_query_mask)
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec

View File

@ -51,7 +51,9 @@ def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
def get_non_pad_mask(seq):
return layers.unsqueeze((seq != 0).astype(np.float32), [-1])
mask = (seq != 0).astype(np.float32)
mask = np.expand_dims(mask, axis=-1)
return mask
def get_attn_key_pad_mask(seq_k, seq_q):
@ -60,8 +62,22 @@ def get_attn_key_pad_mask(seq_k, seq_q):
# Expand to fit the shape of key query attention matrix.
len_q = seq_q.shape[1]
padding_mask = (seq_k != 0).astype(np.float32)
padding_mask = layers.expand(
layers.unsqueeze(padding_mask, [1]), [1, len_q, 1])
padding_mask = np.expand_dims(padding_mask, axis=1)
padding_mask = padding_mask.repeat([len_q], axis=1)
padding_mask = (padding_mask == 0).astype(np.float32) * (-2**32 + 1)
return padding_mask
def get_dec_attn_key_pad_mask(seq_k, seq_q):
''' For masking out the padding part of key sequence. '''
# Expand to fit the shape of key query attention matrix.
len_q = seq_q.shape[1]
padding_mask = (seq_k == 0).astype(np.float32)
padding_mask = np.expand_dims(padding_mask, axis=1)
triu_tensor = get_triu_tensor(seq_q, seq_q)
padding_mask = padding_mask.repeat([len_q], axis=1) + triu_tensor
padding_mask = (padding_mask != 0).astype(np.float32) * (-2**32 + 1)
return padding_mask

View File

@ -80,6 +80,7 @@ class Subset(DatasetMixin):
# whole audio for valid set
pass
else:
# Randomly crop segment_length from audios in the training set.
# audio shape: [len]
if audio.shape[0] >= segment_length:
max_audio_start = audio.shape[0] - segment_length

View File

@ -28,6 +28,25 @@ from .waveflow_modules import WaveFlowLoss, WaveFlowModule
class WaveFlow():
"""Wrapper class of WaveFlow model that supports multiple APIs.
This module provides APIs for model building, training, validation,
inference, benchmarking, and saving.
Args:
config (obj): config info.
checkpoint_dir (str): path for checkpointing.
parallel (bool, optional): whether use multiple GPUs for training.
Defaults to False.
rank (int, optional): the rank of the process in a multi-process
scenario. Defaults to 0.
nranks (int, optional): the total number of processes. Defaults to 1.
tb_logger (obj, optional): logger to visualize metrics.
Defaults to None.
Returns:
WaveFlow
"""
def __init__(self,
config,
checkpoint_dir,
@ -44,6 +63,15 @@ class WaveFlow():
self.dtype = "float16" if config.use_fp16 else "float32"
def build(self, training=True):
"""Initialize the model.
Args:
training (bool, optional): Whether the model is built for training or inference.
Defaults to True.
Returns:
None
"""
config = self.config
dataset = LJSpeech(config, self.nranks, self.rank)
self.trainloader = dataset.trainloader
@ -99,6 +127,14 @@ class WaveFlow():
self.waveflow = waveflow
def train_step(self, iteration):
"""Train the model for one step.
Args:
iteration (int): current iteration number.
Returns:
None
"""
self.waveflow.train()
start_time = time.time()
@ -135,6 +171,14 @@ class WaveFlow():
@dg.no_grad
def valid_step(self, iteration):
"""Run the model on the validation dataset.
Args:
iteration (int): current iteration number.
Returns:
None
"""
self.waveflow.eval()
tb = self.tb_logger
@ -167,6 +211,14 @@ class WaveFlow():
@dg.no_grad
def infer(self, iteration):
"""Run the model to synthesize audios.
Args:
iteration (int): iteration number of the loaded checkpoint.
Returns:
None
"""
self.waveflow.eval()
config = self.config
@ -179,10 +231,13 @@ class WaveFlow():
mels_list = [mels for _, mels in self.validloader()]
if sample is not None:
mels_list = [mels_list[sample]]
else:
sample = 0
for sample, mel in enumerate(mels_list):
filename = "{}/valid_{}.wav".format(output, sample)
print("Synthesize sample {}, save as {}".format(sample, filename))
for idx, mel in enumerate(mels_list):
abs_idx = sample + idx
filename = "{}/valid_{}.wav".format(output, abs_idx)
print("Synthesize sample {}, save as {}".format(abs_idx, filename))
start_time = time.time()
audio = self.waveflow.synthesize(mel, sigma=self.config.sigma)
@ -200,6 +255,14 @@ class WaveFlow():
@dg.no_grad
def benchmark(self):
"""Run the model to benchmark synthesis speed.
Args:
None
Returns:
None
"""
self.waveflow.eval()
mels_list = [mels for _, mels in self.validloader()]
@ -220,6 +283,14 @@ class WaveFlow():
print("{} X real-time".format(audio_time / syn_time))
def save(self, iteration):
"""Save model checkpoint.
Args:
iteration (int): iteration number of the model to be saved.
Returns:
None
"""
utils.save_latest_parameters(self.checkpoint_dir, iteration,
self.waveflow, self.optimizer)
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)

View File

@ -293,6 +293,14 @@ class Flow(dg.Layer):
class WaveFlowModule(dg.Layer):
"""WaveFlow model implementation.
Args:
config (obj): model configuration parameters.
Returns:
WaveFlowModule
"""
def __init__(self, config):
super(WaveFlowModule, self).__init__()
self.n_flows = config.n_flows
@ -321,6 +329,22 @@ class WaveFlowModule(dg.Layer):
self.perms.append(perm)
def forward(self, audio, mel):
"""Training forward pass.
Use a conditioner to upsample mel spectrograms into hidden states.
These hidden states along with the audio are passed to a stack of Flow
modules to obtain the final latent variable z and a list of log scaling
variables, which are then passed to the WaveFlowLoss module to calculate
the negative log likelihood.
Args:
audio (obj): audio samples.
mel (obj): mel spectrograms.
Returns:
z (obj): latent variable.
log_s_list(list): list of log scaling variables.
"""
mel = self.conditioner(mel)
assert mel.shape[2] >= audio.shape[1]
# Prune out the tail of audio/mel so that time/n_group == 0.
@ -361,6 +385,20 @@ class WaveFlowModule(dg.Layer):
return z, log_s_list
def synthesize(self, mel, sigma=1.0):
"""Use model to synthesize waveform.
Use a conditioner to upsample mel spectrograms into hidden states.
These hidden states along with initial random gaussian latent variable
are passed to a stack of Flow modules to obtain the audio output.
Args:
mel (obj): mel spectrograms.
sigma (float, optional): standard deviation of the guassian latent
variable. Defaults to 1.0.
Returns:
audio (obj): synthesized audio.
"""
if self.dtype == "float16":
mel = fluid.layers.cast(mel, self.dtype)
mel = self.conditioner.infer(mel)

View File

@ -53,11 +53,9 @@ class DynamicGRU(dg.Layer):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[:, i:i + 1, :]
input_ = layers.reshape(
input_, [-1, input_.shape[2]], inplace=False)
input_ = layers.reshape(input_, [-1, input_.shape[2]])
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = layers.reshape(
hidden, [-1, 1, hidden.shape[1]], inplace=False)
hidden_ = layers.reshape(hidden, [-1, 1, hidden.shape[1]])
res.append(hidden_)
if self.is_reverse:
res = res[::-1]

View File

@ -71,7 +71,8 @@ class PositionwiseFeedForward(dg.Layer):
x = self.w_2(layers.relu(self.w_1(x)))
# dropout
x = layers.dropout(x, self.dropout)
x = layers.dropout(
x, self.dropout, dropout_implementation='upscale_in_train')
x = layers.transpose(x, [0, 2, 1])
# residual connection

610
parakeet/modules/modules.py Normal file
View File

@ -0,0 +1,610 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
import numpy as np
from . import conv
from . import weight_norm
def FC(name_scope,
in_features,
size,
num_flatten_dims=1,
relu=False,
dropout=0.0,
epsilon=1e-30,
act=None,
is_test=False,
dtype="float32"):
"""
A special Linear Layer, when it is used with dropout, the weight is
initialized as normal(0, std=np.sqrt((1-dropout) / in_features))
"""
# stds
if isinstance(in_features, int):
in_features = [in_features]
stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds
]
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attrs = [fluid.ParamAttr(initializer=init) for init in weight_inits]
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = weight_norm.FC(name_scope,
size,
num_flatten_dims=num_flatten_dims,
param_attr=weight_attrs,
bias_attr=bias_attr,
act=act,
dtype=dtype)
return layer
def Conv1D(name_scope,
in_channels,
num_filters,
filter_size=3,
dilation=1,
groups=None,
causal=False,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
"""
A special Conv1D Layer, when it is used with dropout, the weight is
initialized as
normal(0, std=np.sqrt(std_mul * (1-dropout) / (filter_size * in_features)))
"""
# std
std = np.sqrt((std_mul * (1 - dropout)) / (filter_size * in_channels))
weight_init = fluid.initializer.NormalInitializer(loc=0.0, scale=std)
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1D(
name_scope,
in_channels,
num_filters,
filter_size,
dilation,
groups=groups,
causal=causal,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def Embedding(name_scope,
num_embeddings,
embed_dim,
is_sparse=False,
is_distributed=False,
padding_idx=None,
std=0.01,
dtype="float32"):
# param attrs
weight_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(
scale=std))
layer = dg.Embedding(
name_scope, (num_embeddings, embed_dim),
padding_idx=padding_idx,
param_attr=weight_attr,
dtype=dtype)
return layer
class Conv1DGLU(dg.Layer):
"""
A Convolution 1D block with GLU activation. It also applys dropout for the
input x. It fuses speaker embeddings through a FC activated by softsign. It
has residual connection from the input x, and scale the output by
np.sqrt(0.5).
"""
def __init__(self,
name_scope,
n_speakers,
speaker_dim,
in_channels,
num_filters,
filter_size,
dilation,
std_mul=4.0,
dropout=0.0,
causal=False,
residual=True,
dtype="float32"):
super(Conv1DGLU, self).__init__(name_scope, dtype=dtype)
# conv spec
self.in_channels = in_channels
self.n_speakers = n_speakers
self.speaker_dim = speaker_dim
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
# weight init and dropout
self.std_mul = std_mul
self.dropout = dropout
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channes should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
std_mul=std_mul,
dropout=dropout,
dtype=dtype)
if n_speakers > 1:
assert (speaker_dim is not None
), "speaker embed should not be null in multi-speaker case"
self.fc = Conv1D(
self.full_name(),
speaker_dim,
num_filters,
filter_size=1,
dilation=1,
causal=False,
act="softsign",
dtype=dtype)
def forward(self, x, speaker_embed_bc1t=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1DGLU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
speaker_embed_bct1 (Variable): Shape(B, C_sp, 1, T), expanded
speaker embed, where C_sp means speaker embedding size. Note
that when using residual connection, the Conv1DGLU does not
change the number of channels, so out channels equals input
channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1DGLU, where
C_out means the output channels of Conv1DGLU.
"""
residual = x
x = fluid.layers.dropout(x, self.dropout)
x = self.conv(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc1t is not None:
sp = self.fc(speaker_embed_bc1t)
content = content + sp
# glu
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def add_input(self, x, speaker_embed_bc11=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
speaker_embed_bc11: shape(B, speaker_dim, 1, time_steps)
Outputs:
out: shape(B, num_filters, 1, time_steps), where time_steps = 1
"""
residual = x
# add step input and produce step output
x = fluid.layers.dropout(x, self.dropout)
x = self.conv.add_input(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc11 is not None:
sp = self.fc(speaker_embed_bc11)
content = content + sp
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def Conv1DTranspose(name_scope,
in_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=None,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
std = np.sqrt(std_mul * (1 - dropout) / (in_channels * filter_size))
weight_init = fluid.initializer.NormalInitializer(scale=std)
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_init = fluid.initializer.ConstantInitializer(0.0)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1DTranspose(
name_scope,
in_channels,
num_filters,
filter_size,
padding=padding,
stride=stride,
dilation=dilation,
groups=groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def compute_position_embedding(rad):
# rad is a transposed radius, shape(embed_dim, n_vocab)
embed_dim, n_vocab = rad.shape
even_dims = dg.to_variable(np.arange(0, embed_dim, 2).astype("int32"))
odd_dims = dg.to_variable(np.arange(1, embed_dim, 2).astype("int32"))
even_rads = fluid.layers.gather(rad, even_dims)
odd_rads = fluid.layers.gather(rad, odd_dims)
sines = fluid.layers.sin(even_rads)
cosines = fluid.layers.cos(odd_rads)
temp = fluid.layers.scatter(rad, even_dims, sines)
out = fluid.layers.scatter(temp, odd_dims, cosines)
out = fluid.layers.transpose(out, perm=[1, 0])
return out
def position_encoding_init(n_position,
d_pos_vec,
position_rate=1.0,
sinusoidal=True):
""" Init the sinusoid position encoding table """
# keep idx 0 for padding token position encoding zero vector
position_enc = np.array([[
position_rate * pos / np.power(10000, 2 * (i // 2) / d_pos_vec)
for i in range(d_pos_vec)
] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
if sinusoidal:
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc
class PositionEmbedding(dg.Layer):
def __init__(self,
name_scope,
n_position,
d_pos_vec,
position_rate=1.0,
is_sparse=False,
is_distributed=False,
param_attr=None,
max_norm=None,
padding_idx=None,
dtype="float32"):
super(PositionEmbedding, self).__init__(name_scope, dtype=dtype)
self.embed = dg.Embedding(
self.full_name(),
size=(n_position, d_pos_vec),
is_sparse=is_sparse,
is_distributed=is_distributed,
padding_idx=None,
param_attr=param_attr,
dtype=dtype)
self.set_weight(
position_encoding_init(
n_position,
d_pos_vec,
position_rate=position_rate,
sinusoidal=False).astype(dtype))
self._is_sparse = is_sparse
self._is_distributed = is_distributed
self._remote_prefetch = self._is_sparse and (not self._is_distributed)
if self._remote_prefetch:
assert self._is_sparse is True and self._is_distributed is False
self._padding_idx = (-1 if padding_idx is None else padding_idx if
padding_idx >= 0 else (n_position + padding_idx))
self._position_rate = position_rate
self._max_norm = max_norm
self._dtype = dtype
def set_weight(self, array):
assert self.embed._w.shape == list(array.shape), "shape does not match"
self.embed._w._ivar.value().get_tensor().set(
array, fluid.framework._current_expected_place())
def forward(self, indices, speaker_position_rate=None):
"""
Args:
indices (Variable): Shape (B, T, 1), dtype: int64, position
indices, where B means the batch size, T means the time steps.
speaker_position_rate (Variable | float, optional), position
rate. It can be a float point number or a Variable with
shape (1,), then this speaker_position_rate is used for every
example. It can also be a Variable with shape (B, 1), which
contains a speaker position rate for each speaker.
Returns:
out (Variable): Shape(B, C_pos), position embedding, where C_pos
means position embedding size.
"""
rad = fluid.layers.transpose(self.embed._w, perm=[1, 0])
batch_size = indices.shape[0]
if speaker_position_rate is None:
weight = compute_position_embedding(rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif (np.isscalar(speaker_position_rate) or
isinstance(speaker_position_rate, fluid.framework.Variable) and
speaker_position_rate.shape == [1, 1]):
# # make a weight
# scale the weight (the operand for sin & cos)
if np.isscalar(speaker_position_rate):
scaled_rad = fluid.layers.scale(rad, speaker_position_rate)
else:
scaled_rad = fluid.layers.elementwise_mul(
rad, speaker_position_rate[0])
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif np.prod(speaker_position_rate.shape) > 1:
assert speaker_position_rate.shape == [batch_size, 1]
outputs = []
for i in range(batch_size):
rate = speaker_position_rate[i] # rate has shape [1]
scaled_rad = fluid.layers.elementwise_mul(rad, rate)
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(
self._dtype)
sequence = indices[i]
self._helper.append_op(
type="lookup_table",
inputs={"Ids": sequence,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx": -1,
})
outputs.append(out)
out = fluid.layers.stack(outputs)
return out
else:
raise Exception("Then you can just use position rate at init")
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1D_GU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
skip (Variable): Shape(B, C_in, 1, T), skip connection.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1D_GU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1D_GU, where
C_out means the output channels of Conv1D_GU.
skip (Variable): Shape(B, C_out, 1, T), skip connection.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(
fluid.layers.sigmoid(gate), fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
skip: shape(B, num_filters, 1, time_steps), skip connection
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
x: shape(B, num_filters, 1, time_steps), where time_steps = 1
skip: skip connection, same shape as x
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(
fluid.layers.sigmoid(gate), fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer

View File

@ -78,17 +78,15 @@ class ScaledDotProductAttention(dg.Layer):
"""
# Compute attention score
attention = layers.matmul(
query, key, transpose_y=True) #transpose the last dim in y
attention = attention / math.sqrt(self.d_key)
query, key, transpose_y=True, alpha=self.d_key
**-0.5) #transpose the last dim in y
# Mask key to ignore padding
if mask is not None:
attention = attention * mask
mask = (mask == 0).astype(np.float32) * (-2**32 + 1)
attention = attention + mask
attention = layers.softmax(attention)
attention = layers.dropout(attention, dropout)
attention = layers.dropout(
attention, dropout, dropout_implementation='upscale_in_train')
# Mask query to ignore padding
if query_mask is not None:
@ -142,17 +140,11 @@ class MultiheadAttention(dg.Layer):
result (Variable), Shape(B, T, C), the result of mutihead attention.
attention (Variable), Shape(n_head * B, T, C), the attention of key.
"""
batch_size = key.shape[0]
seq_len_key = key.shape[1]
seq_len_query = query_input.shape[1]
# repeat masks h times
if query_mask is not None:
query_mask = layers.expand(query_mask,
[self.num_head, 1, seq_len_key])
if mask is not None:
mask = layers.expand(mask, (self.num_head, 1, 1))
# Make multihead attention
# key & value.shape = (batch_size, seq_len, feature)(feature = num_head * num_hidden_per_attn)
key = layers.reshape(
@ -176,6 +168,18 @@ class MultiheadAttention(dg.Layer):
result, attention = self.scal_attn(
key, value, query, mask=mask, query_mask=query_mask)
key = layers.reshape(
layers.transpose(key, [2, 0, 1, 3]), [-1, seq_len_key, self.d_k])
value = layers.reshape(
layers.transpose(value, [2, 0, 1, 3]),
[-1, seq_len_key, self.d_k])
query = layers.reshape(
layers.transpose(query, [2, 0, 1, 3]),
[-1, seq_len_query, self.d_q])
result, attention = self.scal_attn(
key, value, query, mask=mask, query_mask=query_mask)
# concat all multihead result
result = layers.reshape(
result, [self.num_head, batch_size, seq_len_query, self.d_q])
@ -184,7 +188,10 @@ class MultiheadAttention(dg.Layer):
[batch_size, seq_len_query, -1])
if self.is_concat:
result = layers.concat([query_input, result], axis=-1)
result = layers.dropout(self.fc(result), self.dropout)
result = layers.dropout(
self.fc(result),
self.dropout,
dropout_implementation='upscale_in_train')
result = result + query_input
result = self.layer_norm(result)