diff --git a/examples/parallelwave_gan/baker/config.py b/examples/parallelwave_gan/baker/config.py index f555791..d1f4b11 100644 --- a/examples/parallelwave_gan/baker/config.py +++ b/examples/parallelwave_gan/baker/config.py @@ -13,9 +13,12 @@ # limitations under the License. import yaml +from pathlib import Path from yacs.config import CfgNode as Configuration -with open("conf/default.yaml", 'rt') as f: +config_path = (Path(__file__).parent / "conf" / "default.yaml").resolve() + +with open(config_path, 'rt') as f: _C = yaml.safe_load(f) _C = Configuration(_C) diff --git a/examples/speedyspeech/baker/config.py b/examples/speedyspeech/baker/config.py index 3ca3121..3e7b88f 100644 --- a/examples/speedyspeech/baker/config.py +++ b/examples/speedyspeech/baker/config.py @@ -18,7 +18,7 @@ from pathlib import Path config_path = (Path(__file__).parent / "conf" / "default.yaml").resolve() -with open("conf/default.yaml", 'rt') as f: +with open(config_path, 'rt') as f: _C = yaml.safe_load(f) _C = Configuration(_C) diff --git a/examples/speedyspeech/baker/inference.py b/examples/speedyspeech/baker/inference.py index 2be9322..02152b3 100644 --- a/examples/speedyspeech/baker/inference.py +++ b/examples/speedyspeech/baker/inference.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. +import os import argparse from pathlib import Path @@ -31,6 +32,8 @@ def main(): type=str, help="text to synthesize, a 'utt_id sentence' pair per line") parser.add_argument("--output-dir", type=str, help="output dir") + parser.add_argument( + "--enable-auto-log", action="store_true", help="use auto log") args, _ = parser.parse_known_args() @@ -48,6 +51,23 @@ def main(): pwg_config.enable_memory_optim() pwg_predictor = inference.create_predictor(pwg_config) + if args.enable_auto_log: + import auto_log + os.makedirs("output", exist_ok=True) + pid = os.getpid() + logger = auto_log.AutoLogger( + model_name="speedyspeech", + model_precision='float32', + batch_size=1, + data_shape="dynamic", + save_path="./output/auto_log.log", + inference_config=speedyspeech_config, + pids=pid, + process_name=None, + gpu_ids=0, + time_keys=['preprocess_time', 'inference_time', 'postprocess_time'], + warmup=0) + output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) sentences = [] @@ -57,10 +77,16 @@ def main(): sentences.append((utt_id, sentence)) for utt_id, sentence in sentences: + if args.enable_auto_log: + logger.times.start() + phones, tones = text_analysis(sentence) phones = phones.numpy() tones = tones.numpy() + if args.enable_auto_log: + logger.times.stamp() + input_names = speedyspeech_predictor.get_input_names() phones_handle = speedyspeech_predictor.get_input_handle(input_names[0]) tones_handle = speedyspeech_predictor.get_input_handle(input_names[1]) @@ -86,9 +112,18 @@ def main(): output_handle = pwg_predictor.get_output_handle(output_names[0]) wav = output_data = output_handle.copy_to_cpu() + if args.enable_auto_log: + logger.times.stamp() + sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000) + + if args.enable_auto_log: + logger.times.end(stamp=True) print(f"{utt_id} done!") + if args.enable_auto_log: + logger.report() + if __name__ == "__main__": main() diff --git a/tests/prepare.sh b/tests/prepare.sh new file mode 100644 index 0000000..2fa6347 --- /dev/null +++ b/tests/prepare.sh @@ -0,0 +1,58 @@ +#!/bin/bash +# usage bash prepare.sh MODE +# FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$1 + +# dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[1]}") + +trainer_list=$(func_parser_value "${lines[14]}") + +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_baker_ckpt_0.4.zip + wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/pwg_baker_ckpt_0.4.zip + (cd ./pretrain_models && unzip speedyspeech_baker_ckpt_0.4.zip && unzip pwg_baker_ckpt_0.4.zip) + # generate a config patch + echo 'max_epoch: 30' > lite_train_infer.yaml + # download data + rm -rf ./train_data/mini_BZNSYP + wget -nc -P ./train_data/ https://paddlespeech.bj.bcebos.com/datasets/CE/speedyspeech/mini_BZNSYP.tar.gz + cd ./train_data/ && tar xzf mini_BZNSYP.tar.gz + cd ../ +elif [ ${MODE} = "whole_train_infer" ];then + wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_baker_ckpt_0.4.zip + wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/pwg_baker_ckpt_0.4.zip + (cd ./pretrain_models && unzip speedyspeech_baker_ckpt_0.4.zip && unzip pwg_baker_ckpt_0.4.zip) + rm -rf ./train_data/processed_BZNSYP + wget -nc -P ./train_data/ https://paddlespeech.bj.bcebos.com/datasets/CE/speedyspeech/processed_BZNSYP.tar.gz + cd ./train_data/ && tar xzf processed_BZNSYP.tar.gz + ln -s ./dump ./BZNSYP + cd ../ +else + # whole infer using paddle inference library + wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_pwg_inference_0.4.zip + (cd ./pretrain_models && unzip speedyspeech_pwg_inference_0.4.zip) +fi diff --git a/tests/speedyspeech_params.txt b/tests/speedyspeech_params.txt new file mode 100644 index 0000000..e225e2d --- /dev/null +++ b/tests/speedyspeech_params.txt @@ -0,0 +1,51 @@ +===========================train_params=========================== +model_name:speedyspeech +python:python3.7 +gpu_list:0|0,1 +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null +## +trainer:lite_train|norm_train +norm_train:../examples/speedyspeech/baker/train.py --train-metadata=train_data/BZNSYP/train/norm/metadata.jsonl --dev-metadata=train_data/BZNSYP/dev/norm/metadata.jsonl --output-dir=exp/lite --nprocs=1 +null:null +null:null +null:null +lite_train:../examples/speedyspeech/baker/train.py --train-metadata=train_data/mini_BZNSYP/train/norm/metadata.jsonl --dev-metadata=train_data/mini_BZNSYP/dev/norm/metadata.jsonl --config=lite_train_infer.yaml --output-dir=exp/default --nprocs=1 +null:null +## +===========================eval_params=========================== +eval:../examples/speedyspeech/baker/synthesize_e2e.py --speedyspeech-config=../examples/speedyspeech/baker/conf/default.yaml --speedyspeech-checkpoint=pretrain_models/speedyspeech_baker_ckpt_0.4/speedyspeech_snapshot_iter_91800.pdz --speedyspeech-stat=pretrain_models/speedyspeech_baker_ckpt_0.4/speedy_speech_stats.npy --pwg-config=../examples/parallelwave_gan/baker/conf/default.yaml --pwg-checkpoint=pretrain_models/pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz --pwg-stat=pretrain_models/pwg_baker_ckpt_0.4/pwg_stats.npy --text=../examples/speedyspeech/baker/sentences.txt --output-dir=e2e --inference-dir=inference --device="gpu" +null:null +## +===========================infer_params=========================== +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null +## +null:null +null:null +null:null +inference:../examples/speedyspeech/baker/inference.py --inference-dir=pretrain_models/speedyspeech_pwg_inference_0.4 --text=../examples/speedyspeech/baker/sentences.txt --output-dir=inference_out --enable-auto-log +--use_gpu:True +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null +null:null diff --git a/tests/test.sh b/tests/test.sh new file mode 100644 index 0000000..8578930 --- /dev/null +++ b/tests/test.sh @@ -0,0 +1,364 @@ +#!/bin/bash +# usage: bash test.sh ***.txt MODE + +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +function func_set_params(){ + key=$1 + value=$2 + if [ ${key} = "null" ];then + echo " " + elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then + echo " " + else + echo "${key}=${value}" + fi +} +function func_parser_params(){ + strs=$1 + IFS=":" + array=(${strs}) + key=${array[0]} + tmp=${array[1]} + IFS="|" + res="" + for _params in ${tmp[*]}; do + IFS="=" + array=(${_params}) + mode=${array[0]} + value=${array[1]} + if [[ ${mode} = ${MODE} ]]; then + IFS="|" + #echo $(func_set_params "${mode}" "${value}") + echo $value + break + fi + IFS="|" + done + echo ${res} +} +function status_check(){ + last_status=$1 # the exit code + run_command=$2 + run_log=$3 + if [ $last_status -eq 0 ]; then + echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} + else + echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} + fi +} + +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") +gpu_list=$(func_parser_value "${lines[3]}") +train_use_gpu_key=$(func_parser_key "${lines[4]}") +train_use_gpu_value=$(func_parser_value "${lines[4]}") +autocast_list=$(func_parser_value "${lines[5]}") +autocast_key=$(func_parser_key "${lines[5]}") +epoch_key=$(func_parser_key "${lines[6]}") +epoch_num=$(func_parser_params "${lines[6]}") +save_model_key=$(func_parser_key "${lines[7]}") +train_batch_key=$(func_parser_key "${lines[8]}") +train_batch_value=$(func_parser_params "${lines[8]}") +pretrain_model_key=$(func_parser_key "${lines[9]}") +pretrain_model_value=$(func_parser_value "${lines[9]}") +train_model_name=$(func_parser_value "${lines[10]}") +train_infer_img_dir=$(func_parser_value "${lines[11]}") +train_param_key1=$(func_parser_key "${lines[12]}") +train_param_value1=$(func_parser_value "${lines[12]}") + +trainer_list=$(func_parser_value "${lines[14]}") +trainer_norm=$(func_parser_key "${lines[15]}") +norm_trainer=$(func_parser_value "${lines[15]}") +pact_key=$(func_parser_key "${lines[16]}") +pact_trainer=$(func_parser_value "${lines[16]}") +fpgm_key=$(func_parser_key "${lines[17]}") +fpgm_trainer=$(func_parser_value "${lines[17]}") +distill_key=$(func_parser_key "${lines[18]}") +distill_trainer=$(func_parser_value "${lines[18]}") +trainer_key1=$(func_parser_key "${lines[19]}") +trainer_value1=$(func_parser_value "${lines[19]}") +trainer_key2=$(func_parser_key "${lines[20]}") +trainer_value2=$(func_parser_value "${lines[20]}") + +eval_py=$(func_parser_value "${lines[23]}") +eval_key1=$(func_parser_key "${lines[24]}") +eval_value1=$(func_parser_value "${lines[24]}") + +save_infer_key=$(func_parser_key "${lines[27]}") +export_weight=$(func_parser_key "${lines[28]}") +norm_export=$(func_parser_value "${lines[29]}") +pact_export=$(func_parser_value "${lines[30]}") +fpgm_export=$(func_parser_value "${lines[31]}") +distill_export=$(func_parser_value "${lines[32]}") +export_key1=$(func_parser_key "${lines[33]}") +export_value1=$(func_parser_value "${lines[33]}") +export_key2=$(func_parser_key "${lines[34]}") +export_value2=$(func_parser_value "${lines[34]}") + +# parser inference model +infer_model_dir_list=$(func_parser_value "${lines[36]}") +infer_export_list=$(func_parser_value "${lines[37]}") +infer_is_quant=$(func_parser_value "${lines[38]}") +# parser inference +inference_py=$(func_parser_value "${lines[39]}") +use_gpu_key=$(func_parser_key "${lines[40]}") +use_gpu_list=$(func_parser_value "${lines[40]}") +use_mkldnn_key=$(func_parser_key "${lines[41]}") +use_mkldnn_list=$(func_parser_value "${lines[41]}") +cpu_threads_key=$(func_parser_key "${lines[42]}") +cpu_threads_list=$(func_parser_value "${lines[42]}") +batch_size_key=$(func_parser_key "${lines[43]}") +batch_size_list=$(func_parser_value "${lines[43]}") +use_trt_key=$(func_parser_key "${lines[44]}") +use_trt_list=$(func_parser_value "${lines[44]}") +precision_key=$(func_parser_key "${lines[45]}") +precision_list=$(func_parser_value "${lines[45]}") +infer_model_key=$(func_parser_key "${lines[46]}") +image_dir_key=$(func_parser_key "${lines[47]}") +infer_img_dir=$(func_parser_value "${lines[47]}") +save_log_key=$(func_parser_key "${lines[48]}") +benchmark_key=$(func_parser_key "${lines[49]}") +benchmark_value=$(func_parser_value "${lines[49]}") +infer_key1=$(func_parser_key "${lines[50]}") +infer_value1=$(func_parser_value "${lines[50]}") + +LOG_PATH="./tests/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results.log" + + +function func_inference(){ + IFS='|' + _python=$1 + _script=$2 + _model_dir=$3 + _log_path=$4 + _img_dir=$5 + _flag_quant=$6 + # inference + for use_gpu in ${use_gpu_list[*]}; do + if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then + for use_mkldnn in ${use_mkldnn_list[*]}; do + if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + for threads in ${cpu_threads_list[*]}; do + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") + set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") + set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") + command="${_python} ${_script} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + done + done + done + elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then + for use_trt in ${use_trt_list[*]}; do + for precision in ${precision_list[*]}; do + if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then + continue + fi + if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then + continue + fi + if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then + continue + fi + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") + set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") + set_precision=$(func_set_params "${precision_key}" "${precision}") + set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") + command="${_python} ${_script} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + + done + done + done + else + echo "Does not support hardware other than CPU and GPU Currently!" + fi + done +} + +if [ ${MODE} = "infer" ]; then + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + # set CUDA_VISIBLE_DEVICES + eval $env + export Count=0 + IFS="|" + infer_run_exports=(${infer_export_list}) + infer_quant_flag=(${infer_is_quant}) + for infer_model in ${infer_model_dir_list[*]}; do + # run export + if [ ${infer_run_exports[Count]} != "null" ];then + set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${infer_model}") + export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_export=$? + if [ ${status_export} = 0 ];then + status_check $status_export "${export_cmd}" "${status_log}" + fi + fi + #run inference + is_quant=${infer_quant_flag[Count]} + func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) + done + +else + IFS="|" + export Count=0 + USE_GPU_KEY=(${train_use_gpu_value}) + for gpu in ${gpu_list[*]}; do + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) + if [ ${gpu} = "-1" ];then + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + + # load pretrain from norm training if current trainer is pact or fpgm trainer + if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then + set_pretrain="${load_norm_train_model}" + fi + + set_save_model=$(func_set_params "${save_model_key}" "${save_log}") + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} ${run_train} --nprocs={#ngpu}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval "unset CUDA_VISIBLE_DEVICES" + eval $cmd + status_check $? "${cmd}" "${status_log}" + + set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") + # save norm trained models to set pretrain for pact training and fpgm training + if [ ${trainer} = ${trainer_norm} ]; then + load_norm_train_model=${set_eval_pretrain} + fi + # run eval + if [ ${eval_py} != "null" ]; then + set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") + eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + # run export model + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") + export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done # done with: for trainer in ${trainer_list[*]}; do + done # done with: for autocast in ${autocast_list[*]}; do + done # done with: for gpu in ${gpu_list[*]}; do +fi # end if [ ${MODE} = "infer" ]; then