diff --git a/examples/deepvoice3/train.py b/examples/deepvoice3/train.py index 3cedf57..c552217 100644 --- a/examples/deepvoice3/train.py +++ b/examples/deepvoice3/train.py @@ -114,9 +114,9 @@ def train(args, config): loss.numpy()[0], causal_mel_loss.numpy()[0], non_causal_mel_loss.numpy()[0])) - writer.add_scalar("loss/causal_mel_loss", causal_mel_loss.numpy()[0], global_step=global_step) - writer.add_scalar("loss/non_causal_mel_loss", non_causal_mel_loss.numpy()[0], global_step=global_step) - writer.add_scalar("loss/loss", loss.numpy()[0], global_step=global_step) + writer.add_scalar("loss/causal_mel_loss", causal_mel_loss.numpy()[0], step=global_step) + writer.add_scalar("loss/non_causal_mel_loss", non_causal_mel_loss.numpy()[0], step=global_step) + writer.add_scalar("loss/loss", loss.numpy()[0], step=global_step) if global_step % config["report_interval"] == 0: text_length = int(text_lengths.numpy()[0]) @@ -124,37 +124,37 @@ def train(args, config): tag = "train_mel/ground-truth" img = cm.viridis(normalize(mels.numpy()[0, :num_frame].T)) - writer.add_image(tag, img, global_step=global_step, dataformats="HWC") + writer.add_image(tag, img, step=global_step) tag = "train_mel/decoded" img = cm.viridis(normalize(decoded.numpy()[0, :num_frame].T)) - writer.add_image(tag, img, global_step=global_step, dataformats="HWC") + writer.add_image(tag, img, step=global_step) tag = "train_mel/refined" img = cm.viridis(normalize(refined.numpy()[0, :num_frame].T)) - writer.add_image(tag, img, global_step=global_step, dataformats="HWC") + writer.add_image(tag, img, step=global_step) vocoder = WaveflowVocoder() vocoder.model.eval() tag = "train_audio/ground-truth-waveflow" wav = vocoder(F.transpose(mels[0:1, :num_frame, :], (0, 2, 1))) - writer.add_audio(tag, wav.numpy()[0], global_step=global_step, sample_rate=22050) + writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) tag = "train_audio/decoded-waveflow" wav = vocoder(F.transpose(decoded[0:1, :num_frame, :], (0, 2, 1))) - writer.add_audio(tag, wav.numpy()[0], global_step=global_step, sample_rate=22050) + writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) tag = "train_audio/refined-waveflow" wav = vocoder(F.transpose(refined[0:1, :num_frame, :], (0, 2, 1))) - writer.add_audio(tag, wav.numpy()[0], global_step=global_step, sample_rate=22050) + writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050) attentions_np = attentions.numpy() attentions_np = attentions_np[:, 0, :num_frame // 4 , :text_length] for i, attention_layer in enumerate(np.rot90(attentions_np, axes=(1,2))): tag = "train_attention/layer_{}".format(i) img = cm.viridis(normalize(attention_layer)) - writer.add_image(tag, img, global_step=global_step, dataformats="HWC") + writer.add_image(tag, img, step=global_step, dataformats="HWC") if global_step % config["save_interval"] == 0: save_parameters(writer.logdir, global_step, model, optim)