Merge branch 'fix' into 'master'
fix the bug 1/x=0 in python2 See merge request !41
This commit is contained in:
commit
22cf0b82e8
|
@ -62,7 +62,7 @@ class FastSpeech(dg.Layer):
|
|||
dropout=0.1)
|
||||
self.weight = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.XavierInitializer())
|
||||
k = math.sqrt(1 / cfg['fs_hidden_size'])
|
||||
k = math.sqrt(1.0 / cfg['fs_hidden_size'])
|
||||
self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k))
|
||||
self.mel_linear = dg.Linear(
|
||||
|
|
|
@ -115,7 +115,7 @@ class DurationPredictor(dg.Layer):
|
|||
self.filter_size = filter_size
|
||||
self.dropout = dropout
|
||||
|
||||
k = math.sqrt(1 / self.input_size)
|
||||
k = math.sqrt(1.0 / self.input_size)
|
||||
self.conv1 = Conv1D(
|
||||
num_channels=self.input_size,
|
||||
num_filters=self.out_channels,
|
||||
|
@ -126,7 +126,7 @@ class DurationPredictor(dg.Layer):
|
|||
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k)))
|
||||
#data_format='NTC')
|
||||
k = math.sqrt(1 / self.out_channels)
|
||||
k = math.sqrt(1.0 / self.out_channels)
|
||||
self.conv2 = Conv1D(
|
||||
num_channels=self.out_channels,
|
||||
num_filters=self.out_channels,
|
||||
|
@ -142,7 +142,7 @@ class DurationPredictor(dg.Layer):
|
|||
|
||||
self.weight = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.XavierInitializer())
|
||||
k = math.sqrt(1 / self.out_channels)
|
||||
k = math.sqrt(1.0 / self.out_channels)
|
||||
self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k))
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ class CBHG(dg.Layer):
|
|||
self.hidden_size = hidden_size
|
||||
self.projection_size = projection_size
|
||||
self.conv_list = []
|
||||
k = math.sqrt(1 / projection_size)
|
||||
k = math.sqrt(1.0 / projection_size)
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
num_channels=projection_size,
|
||||
|
@ -58,7 +58,7 @@ class CBHG(dg.Layer):
|
|||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k))))
|
||||
k = math.sqrt(1 / hidden_size)
|
||||
k = math.sqrt(1.0 / hidden_size)
|
||||
for i in range(2, K + 1):
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
|
@ -86,7 +86,7 @@ class CBHG(dg.Layer):
|
|||
|
||||
conv_outdim = hidden_size * K
|
||||
|
||||
k = math.sqrt(1 / conv_outdim)
|
||||
k = math.sqrt(1.0 / conv_outdim)
|
||||
self.conv_projection_1 = Conv1D(
|
||||
num_channels=conv_outdim,
|
||||
num_filters=hidden_size,
|
||||
|
@ -97,7 +97,7 @@ class CBHG(dg.Layer):
|
|||
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k)))
|
||||
|
||||
k = math.sqrt(1 / hidden_size)
|
||||
k = math.sqrt(1.0 / hidden_size)
|
||||
self.conv_projection_2 = Conv1D(
|
||||
num_channels=hidden_size,
|
||||
num_filters=projection_size,
|
||||
|
@ -121,7 +121,7 @@ class CBHG(dg.Layer):
|
|||
|
||||
h_0 = np.zeros((batch_size, hidden_size // 2), dtype="float32")
|
||||
h_0 = dg.to_variable(h_0)
|
||||
k = math.sqrt(1 / hidden_size)
|
||||
k = math.sqrt(1.0 / hidden_size)
|
||||
self.fc_forward1 = dg.Linear(
|
||||
hidden_size,
|
||||
hidden_size // 2 * 3,
|
||||
|
@ -240,7 +240,7 @@ class Highwaynet(dg.Layer):
|
|||
|
||||
self.gates = []
|
||||
self.linears = []
|
||||
k = math.sqrt(1 / num_units)
|
||||
k = math.sqrt(1.0 / num_units)
|
||||
for i in range(num_layers):
|
||||
self.linears.append(
|
||||
dg.Linear(
|
||||
|
|
|
@ -55,7 +55,7 @@ class Decoder(dg.Layer):
|
|||
hidden_size=num_hidden * 2,
|
||||
output_size=num_hidden,
|
||||
dropout_rate=0.2)
|
||||
k = math.sqrt(1 / num_hidden)
|
||||
k = math.sqrt(1.0 / num_hidden)
|
||||
self.linear = dg.Linear(
|
||||
num_hidden,
|
||||
num_hidden,
|
||||
|
|
|
@ -39,7 +39,7 @@ class EncoderPrenet(dg.Layer):
|
|||
param_attr=fluid.initializer.Normal(
|
||||
loc=0.0, scale=1.0))
|
||||
self.conv_list = []
|
||||
k = math.sqrt(1 / embedding_size)
|
||||
k = math.sqrt(1.0 / embedding_size)
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
num_channels=embedding_size,
|
||||
|
@ -52,7 +52,7 @@ class EncoderPrenet(dg.Layer):
|
|||
initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k)),
|
||||
use_cudnn=use_cudnn))
|
||||
k = math.sqrt(1 / num_hidden)
|
||||
k = math.sqrt(1.0 / num_hidden)
|
||||
for _ in range(2):
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
|
@ -78,7 +78,7 @@ class EncoderPrenet(dg.Layer):
|
|||
for i, layer in enumerate(self.batch_norm_list):
|
||||
self.add_sublayer("batch_norm_list_{}".format(i), layer)
|
||||
|
||||
k = math.sqrt(1 / num_hidden)
|
||||
k = math.sqrt(1.0 / num_hidden)
|
||||
self.projection = dg.Linear(
|
||||
num_hidden,
|
||||
num_hidden,
|
||||
|
|
|
@ -48,7 +48,7 @@ class PostConvNet(dg.Layer):
|
|||
self.num_conv = num_conv
|
||||
self.batchnorm_last = batchnorm_last
|
||||
self.conv_list = []
|
||||
k = math.sqrt(1 / (n_mels * outputs_per_step))
|
||||
k = math.sqrt(1.0 / (n_mels * outputs_per_step))
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
num_channels=n_mels * outputs_per_step,
|
||||
|
@ -62,7 +62,7 @@ class PostConvNet(dg.Layer):
|
|||
low=-k, high=k)),
|
||||
use_cudnn=use_cudnn))
|
||||
|
||||
k = math.sqrt(1 / num_hidden)
|
||||
k = math.sqrt(1.0 / num_hidden)
|
||||
for _ in range(1, num_conv - 1):
|
||||
self.conv_list.append(
|
||||
Conv1D(
|
||||
|
|
|
@ -33,7 +33,7 @@ class PreNet(dg.Layer):
|
|||
self.output_size = output_size
|
||||
self.dropout_rate = dropout_rate
|
||||
|
||||
k = math.sqrt(1 / input_size)
|
||||
k = math.sqrt(1.0 / input_size)
|
||||
self.linear1 = dg.Linear(
|
||||
input_size,
|
||||
hidden_size,
|
||||
|
@ -41,7 +41,7 @@ class PreNet(dg.Layer):
|
|||
initializer=fluid.initializer.XavierInitializer()),
|
||||
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k)))
|
||||
k = math.sqrt(1 / hidden_size)
|
||||
k = math.sqrt(1.0 / hidden_size)
|
||||
self.linear2 = dg.Linear(
|
||||
hidden_size,
|
||||
output_size,
|
||||
|
|
|
@ -41,7 +41,7 @@ class PositionwiseFeedForward(dg.Layer):
|
|||
self.use_cudnn = use_cudnn
|
||||
self.dropout = dropout
|
||||
|
||||
k = math.sqrt(1 / d_in)
|
||||
k = math.sqrt(1.0 / d_in)
|
||||
self.w_1 = Conv1D(
|
||||
num_channels=d_in,
|
||||
num_filters=num_hidden,
|
||||
|
@ -52,7 +52,7 @@ class PositionwiseFeedForward(dg.Layer):
|
|||
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k)),
|
||||
use_cudnn=use_cudnn)
|
||||
k = math.sqrt(1 / num_hidden)
|
||||
k = math.sqrt(1.0 / num_hidden)
|
||||
self.w_2 = Conv1D(
|
||||
num_channels=num_hidden,
|
||||
num_filters=d_in,
|
||||
|
|
|
@ -33,7 +33,7 @@ class Linear(dg.Layer):
|
|||
self.bias = is_bias
|
||||
|
||||
if is_bias is not False:
|
||||
k = math.sqrt(1 / in_features)
|
||||
k = math.sqrt(1.0 / in_features)
|
||||
self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
||||
low=-k, high=k))
|
||||
|
||||
|
|
Loading…
Reference in New Issue