deepvoice3: update logging functionalities

This commit is contained in:
chenfeiyu 2020-02-17 14:52:12 +00:00
parent 70e271ed95
commit 2bde79514a
8 changed files with 216 additions and 172 deletions

View File

@ -18,7 +18,7 @@ You can choose to install via pypi or clone the repository and install manually.
1. Install via pypi.
```bash
pip install parakeet
pip install paddle-parakeet
```
2. Install manually.
@ -102,6 +102,19 @@ optional arguments:
5. `--device` is the device (gpu id) to use for training. `-1` means CPU.
example script:
```bash
python train.py --config=./ljspeech.yaml --data=./LJSpeech-1.1/ --output=experiment --device=0
```
You can monitor training log via tensorboard, using the script below.
```bash
cd experiment/log
tensorboard --logdir=.
```
## Synthesis
```text
usage: synthesis.py [-h] [-c CONFIG] [-g DEVICE] checkpoint text output_path
@ -127,3 +140,9 @@ optional arguments:
4. `output_path` is the directory to save results. The output path contains the generated audio files (`*.wav`) and attention plots (*.png) for each sentence.
5. `--device` is the device (gpu id) to use for training. `-1` means CPU.
example script:
```bash
python synthesis.py --config=./ljspeech.yaml --device=0 experiment/checkpoints/model_step_005000000 sentences.txt generated
```

View File

@ -85,7 +85,6 @@ train:
batch_size: 16
epochs: 2000
report_interval: 100
snap_interval: 1000
eval_interval: 10000
save_interval: 10000

View File

@ -22,7 +22,7 @@ from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary
from data import LJSpeechMetaData, DataCollector, Transform
from utils import make_model, eval_model, plot_alignment, plot_alignments, save_state, make_output_tree
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
if __name__ == "__main__":
parser = argparse.ArgumentParser(
@ -176,6 +176,11 @@ if __name__ == "__main__":
parameter_list=dv3.parameters())
gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)
# generation
synthesis_config = config["synthesis"]
power = synthesis_config["power"]
n_iter = synthesis_config["n_iter"]
# =========================link(dataloader, paddle)=========================
# CAUTION: it does not return a DataLoader
loader = fluid.io.DataLoader.from_generator(capacity=10,
@ -198,16 +203,14 @@ if __name__ == "__main__":
# =========================train=========================
epoch = train_config["epochs"]
report_interval = train_config["report_interval"]
snap_interval = train_config["snap_interval"]
save_interval = train_config["save_interval"]
eval_interval = train_config["eval_interval"]
global_step = 1
average_loss = {"mel": 0, "lin": 0, "done": 0, "attn": 0}
for j in range(1, 1 + epoch):
epoch_loss = {"mel": 0., "lin": 0., "done": 0., "attn": 0.}
epoch_loss = 0.
for i, batch in tqdm.tqdm(enumerate(loader, 1)):
dv3.train() # CAUTION: don't forget to switch to train
(text_sequences, text_lengths, text_positions, mel_specs,
@ -225,7 +228,7 @@ if __name__ == "__main__":
losses = criterion(mel_outputs, linear_outputs, done,
alignments, downsampled_mel_specs,
lin_specs, done_flags, text_lengths, frames)
l = criterion.compose_loss(losses)
l = losses["loss"]
l.backward()
# record learning rate before updating
writer.add_scalar("learning_rate",
@ -235,41 +238,31 @@ if __name__ == "__main__":
optim.clear_gradients()
# ==================all kinds of tedious things=================
for k in epoch_loss.keys():
epoch_loss[k] += losses[k].numpy()[0]
average_loss[k] += losses[k].numpy()[0]
# record step loss into tensorboard
epoch_loss += l.numpy()[0]
step_loss = {k: v.numpy()[0] for k, v in losses.items()}
print(step_loss)
for k, v in step_loss.items():
writer.add_scalar(k, v, global_step)
# TODO: clean code
# train state saving, the first sentence in the batch
if global_step % snap_interval == 0:
linear_outputs_np = linear_outputs.numpy()[0].T
denoramlized = np.clip(linear_outputs_np, 0, 1) \
* (-min_level_db) \
+ min_level_db
lin_scaled = np.exp(
(denoramlized + ref_level_db) / 20 * np.log(10))
synthesis_config = config["synthesis"]
power = synthesis_config["power"]
n_iter = synthesis_config["n_iter"]
wav = librosa.griffinlim(lin_scaled**power,
n_iter=n_iter,
hop_length=hop_length,
win_length=win_length)
save_state(state_dir,
writer,
global_step,
mel_input=mel_specs.numpy()[0].T,
mel_output=mel_outputs.numpy()[0].T,
lin_input=lin_specs.numpy()[0].T,
lin_output=linear_outputs.numpy()[0].T,
alignments=alignments.numpy()[:, 0, :, :],
wav=wav)
mel_input=downsampled_mel_specs,
mel_output=mel_outputs,
lin_input=lin_specs,
lin_output=linear_outputs,
alignments=alignments,
win_length=win_length,
hop_length=hop_length,
min_level_db=min_level_db,
ref_level_db=ref_level_db,
power=power,
n_iter=n_iter,
preemphasis=preemphasis,
sample_rate=sample_rate)
# evaluation
if global_step % eval_interval == 0:
@ -291,28 +284,31 @@ if __name__ == "__main__":
state_dir, "waveform",
"eval_sample_{:09d}.wav".format(global_step))
sf.write(wav_path, wav, sample_rate)
writer.add_audio("eval_sample_{}".format(idx),
wav,
global_step,
sample_rate=sample_rate)
attn_path = os.path.join(
state_dir, "alignments",
"eval_sample_attn_{:09d}.png".format(global_step))
plot_alignment(attn, attn_path)
writer.add_image("eval_sample_attn{}".format(idx),
cm.viridis(attn),
global_step,
dataformats="HWC")
# save checkpoint
if global_step % save_interval == 0:
dg.save_dygraph(dv3.state_dict(),
os.path.join(ckpt_dir, "dv3"))
dg.save_dygraph(optim.state_dict(),
os.path.join(ckpt_dir, "dv3"))
# report average loss
if global_step % report_interval == 0:
for k in epoch_loss.keys():
average_loss[k] /= report_interval
print("[average_loss] ",
"global_step: {}".format(global_step), average_loss)
average_loss = {"mel": 0, "lin": 0, "done": 0, "attn": 0}
dg.save_dygraph(
dv3.state_dict(),
os.path.join(ckpt_dir,
"model_step_{}".format(global_step)))
dg.save_dygraph(
optim.state_dict(),
os.path.join(ckpt_dir,
"model_step_{}".format(global_step)))
global_step += 1
# epoch report
for k in epoch_loss.keys():
epoch_loss[k] /= i
print("[epoch_loss] ", "epoch: {}".format(j), epoch_loss)
writer.add_scalar("epoch_average_loss", epoch_loss / i, j)
epoch_loss = 0.

View File

@ -1,5 +1,6 @@
import os
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import librosa
from scipy import signal
@ -125,21 +126,32 @@ def eval_model(model, text, replace_pronounciation_prob, min_level_db,
model.eval()
mel_outputs, linear_outputs, alignments, done = model.transduce(
dg.to_variable(text), dg.to_variable(text_positions))
linear_outputs_np = linear_outputs.numpy()[0].T # (C, T)
print("linear_outputs's shape: ", linear_outputs_np.shape)
denoramlized = np.clip(linear_outputs_np, 0,
1) * (-min_level_db) + min_level_db
linear_outputs_np = linear_outputs.numpy()[0].T # (C, T)
wav = spec_to_waveform(linear_outputs_np, min_level_db, ref_level_db,
power, n_iter, win_length, hop_length, preemphasis)
alignments_np = alignments.numpy()[0] # batch_size = 1
print("linear_outputs's shape: ", linear_outputs_np.shape)
print("alignmnets' shape:", alignments.shape)
return wav, alignments_np
def spec_to_waveform(spec, min_level_db, ref_level_db, power, n_iter,
win_length, hop_length, preemphasis):
"""Convert output linear spec to waveform using griffin-lim vocoder.
Args:
spec (ndarray): the output linear spectrogram, shape(C, T), where C means n_fft, T means frames.
"""
denoramlized = np.clip(spec, 0, 1) * (-min_level_db) + min_level_db
lin_scaled = np.exp((denoramlized + ref_level_db) / 20 * np.log(10))
wav = librosa.griffinlim(lin_scaled**power,
n_iter=n_iter,
hop_length=hop_length,
win_length=win_length)
wav = signal.lfilter([1.], [1., -preemphasis], wav)
print("alignmnets' shape:", alignments.shape)
alignments_np = alignments.numpy()[0].T
return wav, alignments_np
if preemphasis > 0:
wav = signal.lfilter([1.], [1., -preemphasis], wav)
return wav
def make_output_tree(output_dir):
@ -157,88 +169,89 @@ def make_output_tree(output_dir):
os.makedirs(p)
def plot_alignment(alignment, path, info=None):
def plot_alignment(alignment, path):
"""
Plot an attention layer's alignment for a sentence.
alignment: shape(T_enc, T_dec), and T_enc is flipped
alignment: shape(T_dec, T_enc).
"""
fig, ax = plt.subplots()
im = ax.imshow(alignment,
aspect='auto',
origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
plt.figure()
plt.imshow(alignment)
plt.colorbar()
plt.xlabel('Encoder timestep')
plt.ylabel('Decoder timestep')
plt.savefig(path)
plt.close()
def plot_alignments(alignments, save_dir, global_step):
"""
Plot alignments for a sentence when training, we just pick the first
sentence. Each layer is plot separately.
alignments: shape(N, T_dec, T_enc)
"""
n_layers = alignments.shape[0]
for i, alignment in enumerate(alignments):
alignment = alignment.T
path = os.path.join(save_dir, "layer_{}".format(i))
if not os.path.exists(path):
os.makedirs(path)
fname = os.path.join(path, "step_{:09d}".format(global_step))
plot_alignment(alignment, fname)
average_alignment = np.mean(alignments, axis=0).T
path = os.path.join(save_dir, "average")
if not os.path.exists(path):
os.makedirs(path)
fname = os.path.join(path, "step_{:09d}.png".format(global_step))
plot_alignment(average_alignment, fname)
def save_state(save_dir,
writer,
global_step,
mel_input=None,
mel_output=None,
lin_input=None,
lin_output=None,
alignments=None,
wav=None):
win_length=1024,
hop_length=256,
min_level_db=-100,
ref_level_db=20,
power=1.4,
n_iter=32,
preemphasis=0.97,
sample_rate=22050):
"""Save training intermediate results. Save states for the first sentence in the batch, including
mel_spec(predicted, target), lin_spec(predicted, target), attn, waveform.
Args:
save_dir (str): directory to save results.
writer (SummaryWriter): tensorboardX summary writer
global_step (int): global step.
mel_input (Variable, optional): Defaults to None. Shape(B, T_mel, C_mel)
mel_output (Variable, optional): Defaults to None. Shape(B, T_mel, C_mel)
lin_input (Variable, optional): Defaults to None. Shape(B, T_lin, C_lin)
lin_output (Variable, optional): Defaults to None. Shape(B, T_lin, C_lin)
alignments (Variable, optional): Defaults to None. Shape(N, B, T_dec, C_enc)
wav ([type], optional): Defaults to None. [description]
"""
if mel_input is not None and mel_output is not None:
path = os.path.join(save_dir, "mel_spec")
if not os.path.exists(path):
os.makedirs(path)
mel_input = mel_input[0].numpy().T
mel_output = mel_output[0].numpy().T
path = os.path.join(save_dir, "mel_spec")
plt.figure(figsize=(10, 3))
display.specshow(mel_input)
plt.colorbar()
plt.title("mel_input")
plt.savefig(
os.path.join(path,
"target_mel_spec_step{:09d}".format(global_step)))
"target_mel_spec_step{:09d}.png".format(global_step)))
plt.close()
writer.add_image("target/mel_spec",
cm.viridis(mel_input),
global_step,
dataformats="HWC")
plt.figure(figsize=(10, 3))
display.specshow(mel_output)
plt.colorbar()
plt.title("mel_input")
plt.title("mel_output")
plt.savefig(
os.path.join(path,
"predicted_mel_spec_step{:09d}".format(global_step)))
os.path.join(
path, "predicted_mel_spec_step{:09d}.png".format(global_step)))
plt.close()
writer.add_image("predicted/mel_spec",
cm.viridis(mel_output),
global_step,
dataformats="HWC")
if lin_input is not None and lin_output is not None:
lin_input = lin_input[0].numpy().T
lin_output = lin_output[0].numpy().T
path = os.path.join(save_dir, "lin_spec")
if not os.path.exists(path):
os.makedirs(path)
plt.figure(figsize=(10, 3))
display.specshow(lin_input)
@ -246,28 +259,50 @@ def save_state(save_dir,
plt.title("mel_input")
plt.savefig(
os.path.join(path,
"target_lin_spec_step{:09d}".format(global_step)))
"target_lin_spec_step{:09d}.png".format(global_step)))
plt.close()
writer.add_image("target/lin_spec",
cm.viridis(lin_input),
global_step,
dataformats="HWC")
plt.figure(figsize=(10, 3))
display.specshow(lin_output)
plt.colorbar()
plt.title("mel_input")
plt.savefig(
os.path.join(path,
"predicted_lin_spec_step{:09d}".format(global_step)))
os.path.join(
path, "predicted_lin_spec_step{:09d}.png".format(global_step)))
plt.close()
if alignments is not None and len(alignments.shape) == 3:
path = os.path.join(save_dir, "alignments")
if not os.path.exists(path):
os.makedirs(path)
plot_alignments(alignments, path, global_step)
writer.add_image("predicted/lin_spec",
cm.viridis(lin_output),
global_step,
dataformats="HWC")
if wav is not None:
if alignments is not None and len(alignments.shape) == 4:
path = os.path.join(save_dir, "alignments")
alignments = alignments[:, 0, :, :].numpy()
for idx, attn_layer in enumerate(alignments):
save_path = os.path.join(
path,
"train_attn_layer_{}_step_{}.png".format(idx, global_step))
plot_alignment(attn_layer, save_path)
writer.add_image("train_attn/layer_{}".format(idx),
cm.viridis(attn_layer),
global_step,
dataformats="HWC")
if lin_output is not None:
wav = spec_to_waveform(lin_output, min_level_db, ref_level_db, power,
n_iter, win_length, hop_length, preemphasis)
path = os.path.join(save_dir, "waveform")
if not os.path.exists(path):
os.makedirs(path)
sf.write(
os.path.join(path, "sample_step_{:09d}.wav".format(global_step)),
wav, 22050)
save_path = os.path.join(
path, "train_sample_step_{:09d}.wav".format(global_step))
sf.write(save_path, wav, sample_rate)
writer.add_audio("train_sample",
wav,
global_step,
sample_rate=sample_rate)

View File

@ -79,25 +79,26 @@ def unfold_adjacent_frames(folded_frames, r):
class Decoder(dg.Layer):
def __init__(self,
n_speakers,
speaker_dim,
embed_dim,
mel_dim,
r=1,
max_positions=512,
padding_idx=None,
preattention=(ConvSpec(128, 5, 1), ) * 4,
convolutions=(ConvSpec(128, 5, 1), ) * 4,
attention=True,
dropout=0.0,
use_memory_mask=False,
force_monotonic_attention=False,
query_position_rate=1.0,
key_position_rate=1.0,
window_range=WindowRange(-1, 3),
key_projection=True,
value_projection=True):
def __init__(
self,
n_speakers,
speaker_dim,
embed_dim,
mel_dim,
r=1,
max_positions=512,
padding_idx=None, # remove it!
preattention=(ConvSpec(128, 5, 1), ) * 4,
convolutions=(ConvSpec(128, 5, 1), ) * 4,
attention=True,
dropout=0.0,
use_memory_mask=False,
force_monotonic_attention=False,
query_position_rate=1.0,
key_position_rate=1.0,
window_range=WindowRange(-1, 3),
key_projection=True,
value_projection=True):
super(Decoder, self).__init__()
self.dropout = dropout
@ -109,21 +110,23 @@ class Decoder(dg.Layer):
self.n_speakers = n_speakers
conv_channels = convolutions[0].out_channels
# only when padding idx is 0 can we easilt handle it
self.embed_keys_positions = PositionEmbedding(max_positions,
embed_dim,
padding_idx=padding_idx)
padding_idx=0)
self.embed_query_positions = PositionEmbedding(max_positions,
conv_channels,
padding_idx=padding_idx)
padding_idx=0)
if n_speakers > 1:
# CAUTION: mind the sigmoid
std = np.sqrt((1 - dropout) / speaker_dim)
self.speaker_proj1 = Linear(speaker_dim,
1,
act="sigmoid",
param_attr=I.Normal(scale=std))
self.speaker_proj2 = Linear(speaker_dim,
1,
act="sigmoid",
param_attr=I.Normal(scale=std))
# prenet
@ -168,6 +171,7 @@ class Decoder(dg.Layer):
] * len(convolutions)
else:
self.force_monotonic_attention = force_monotonic_attention
for x, y in zip(self.force_monotonic_attention, self.attention):
if x is True and y is False:
raise ValueError("When not using attention, there is no "
@ -249,7 +253,7 @@ class Decoder(dg.Layer):
text_positions (Variable): shape(B, T_enc), dtype: int64.
Positions indices for text inputs for the encoder, where
T_enc means the encoder timesteps.
frame_positions (Variable): shape(B, T_dec // r), dtype:
frame_positions (Variable): shape(B, T_mel // r), dtype:
int64. Positions indices for each decoder time steps.
speaker_embed: shape(batch_size, speaker_dim), speaker embedding,
only used for multispeaker model.
@ -287,16 +291,14 @@ class Decoder(dg.Layer):
if text_positions is not None:
w = self.key_position_rate
if self.n_speakers > 1:
w = w * F.squeeze(F.sigmoid(self.speaker_proj1(speaker_embed)),
[-1])
w = w * F.squeeze(self.speaker_proj1(speaker_embed), [-1])
text_pos_embed = self.embed_keys_positions(text_positions, w)
keys += text_pos_embed # (B, T, C)
if frame_positions is not None:
w = self.query_position_rate
if self.n_speakers > 1:
w = w * F.squeeze(F.sigmoid(self.speaker_proj2(speaker_embed)),
[-1])
w = w * F.squeeze(self.speaker_proj2(speaker_embed), [-1])
frame_pos_embed = self.embed_query_positions(frame_positions, w)
else:
frame_pos_embed = None
@ -387,8 +389,7 @@ class Decoder(dg.Layer):
w = self.key_position_rate
if self.n_speakers > 1:
# shape (B, )
w = w * F.squeeze(F.sigmoid(self.speaker_proj1(speaker_embed)),
[-1])
w = w * F.squeeze(self.speaker_proj1(speaker_embed), [-1])
text_pos_embed = self.embed_keys_positions(text_positions, w)
keys += text_pos_embed # (B, T, C)
@ -417,8 +418,7 @@ class Decoder(dg.Layer):
dtype="int64")
w = self.query_position_rate
if self.n_speakers > 1:
w = w * F.squeeze(F.sigmoid(self.speaker_proj2(speaker_embed)),
[-1])
w = w * F.squeeze(self.speaker_proj2(speaker_embed), [-1])
# (B, T=1, C)
frame_pos_embed = self.embed_query_positions(frame_pos, w)

View File

@ -35,9 +35,11 @@ class Encoder(dg.Layer):
std = np.sqrt((1 - dropout) / speaker_dim)
self.sp_proj1 = Linear(speaker_dim,
embed_dim,
act="softsign",
param_attr=I.Normal(scale=std))
self.sp_proj2 = Linear(speaker_dim,
embed_dim,
act="softsign",
param_attr=I.Normal(scale=std))
self.n_speakers = n_speakers
@ -104,9 +106,7 @@ class Encoder(dg.Layer):
speaker_embed,
self.dropout,
dropout_implementation="upscale_in_train")
x = F.elementwise_add(x,
F.softsign(self.sp_proj1(speaker_embed)),
axis=0)
x = F.elementwise_add(x, self.sp_proj1(speaker_embed), axis=0)
input_embed = x
for layer in self.convolutions:
@ -117,9 +117,7 @@ class Encoder(dg.Layer):
x = layer(x)
if self.n_speakers > 1 and speaker_embed is not None:
x = F.elementwise_add(x,
F.softsign(self.sp_proj2(speaker_embed)),
axis=0)
x = F.elementwise_add(x, self.sp_proj2(speaker_embed), axis=0)
keys = x # (B, C, T)
values = F.scale(input_embed + x, scale=np.sqrt(0.5))

View File

@ -156,8 +156,9 @@ class TTSLoss(object):
compute_mel_loss=True,
compute_done_loss=True,
compute_attn_loss=True):
total_loss = 0.
# n_frames # mel_lengths # decoder_lengths
# 4 个 loss 吧。lin(l1, bce, lin), mel(l1, bce, mel), attn, done
max_frames = lin_hyp.shape[1]
max_mel_steps = max_frames // self.downsample_factor
max_decoder_steps = max_mel_steps // self.r
@ -182,6 +183,7 @@ class TTSLoss(object):
lin_bce_loss = self.binary_divergence(lin_hyp, lin_ref, lin_mask)
lin_loss = self.binary_divergence_weight * lin_bce_loss \
+ (1 - self.binary_divergence_weight) * lin_l1_loss
total_loss += lin_loss
if compute_mel_loss:
mel_hyp = mel_hyp[:, :-self.time_shift, :]
@ -192,32 +194,28 @@ class TTSLoss(object):
# print("=====>", mel_l1_loss.numpy()[0], mel_bce_loss.numpy()[0])
mel_loss = self.binary_divergence_weight * mel_bce_loss \
+ (1 - self.binary_divergence_weight) * mel_l1_loss
total_loss += mel_loss
if compute_attn_loss:
attn_loss = self.attention_loss(
attn_hyp, input_lengths.numpy(),
n_frames.numpy() // (self.downsample_factor * self.r))
total_loss += attn_loss
if compute_done_loss:
done_loss = self.done_loss(done_hyp, done_ref)
total_loss += done_loss
result = {
"mel": mel_loss if compute_mel_loss else None,
"mel_l1_loss": mel_l1_loss if compute_mel_loss else None,
"mel_bce_loss": mel_bce_loss if compute_mel_loss else None,
"lin": lin_loss if compute_lin_loss else None,
"lin_l1_loss": lin_l1_loss if compute_lin_loss else None,
"lin_bce_loss": lin_bce_loss if compute_lin_loss else None,
"loss": total_loss,
"mel/mel_loss": mel_loss if compute_mel_loss else None,
"mel/l1_loss": mel_l1_loss if compute_mel_loss else None,
"mel/bce_loss": mel_bce_loss if compute_mel_loss else None,
"lin/lin_loss": lin_loss if compute_lin_loss else None,
"lin/l1_loss": lin_l1_loss if compute_lin_loss else None,
"lin/bce_loss": lin_bce_loss if compute_lin_loss else None,
"done": done_loss if compute_done_loss else None,
"attn": attn_loss if compute_attn_loss else None,
}
return result
@staticmethod
def compose_loss(result):
total_loss = 0.
for k in ["mel", "lin", "done", "attn"]:
if result[k] is not None:
total_loss += result[k]
return total_loss

View File

@ -6,7 +6,6 @@ import paddle.fluid.layers as F
from parakeet.modules import customized as L
# TODO: just use numpy to init weight norm wrappers
def norm(param, dim, power):
powered = F.pow(param, power)
powered_norm = F.reduce_sum(powered, dim=dim, keep_dim=False)
@ -73,7 +72,7 @@ class WeightNormWrapper(dg.Layer):
w_g, self.create_parameter(shape=temp.shape, dtype=temp.dtype))
F.assign(temp, getattr(self, w_g))
# also set this
# also set this when setting up
setattr(
self.layer, self.param_name,
compute_weight(getattr(self, w_v), getattr(self, w_g), self.dim,