Merge branch 'develop' into baker
This commit is contained in:
commit
489fb69f55
|
@ -0,0 +1,226 @@
|
|||
from scipy.ndimage.morphology import binary_dilation
|
||||
from config import get_cfg_defaults
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from warnings import warn
|
||||
import numpy as np
|
||||
import librosa
|
||||
import struct
|
||||
|
||||
try:
|
||||
import webrtcvad
|
||||
except:
|
||||
warn("Unable to import 'webrtcvad'."
|
||||
"This package enables noise removal and is recommended.")
|
||||
webrtcvad = None
|
||||
|
||||
int16_max = (2**15) - 1
|
||||
|
||||
|
||||
def normalize_volume(wav,
|
||||
target_dBFS,
|
||||
increase_only=False,
|
||||
decrease_only=False):
|
||||
# this function implements Loudness normalization, instead of peak
|
||||
# normalization, See https://en.wikipedia.org/wiki/Audio_normalization
|
||||
# dBFS: Decibels relative to full scale
|
||||
# See https://en.wikipedia.org/wiki/DBFS for more details
|
||||
# for 16Bit PCM audio, minimal level is -96dB
|
||||
# compute the mean dBFS and adjust to target dBFS, with by increasing
|
||||
# or decreasing
|
||||
if increase_only and decrease_only:
|
||||
raise ValueError("Both increase only and decrease only are set")
|
||||
dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav**2))
|
||||
if ((dBFS_change < 0 and increase_only)
|
||||
or (dBFS_change > 0 and decrease_only)):
|
||||
return wav
|
||||
gain = 10**(dBFS_change / 20)
|
||||
return wav * gain
|
||||
|
||||
|
||||
def trim_long_silences(wav, vad_window_length: int,
|
||||
vad_moving_average_width: int,
|
||||
vad_max_silence_length: int, sampling_rate: int):
|
||||
"""
|
||||
Ensures that segments without voice in the waveform remain no longer than a
|
||||
threshold determined by the VAD parameters in params.py.
|
||||
|
||||
:param wav: the raw waveform as a numpy array of floats
|
||||
:return: the same waveform with silences trimmed away (length <= original wav length)
|
||||
"""
|
||||
# Compute the voice detection window size
|
||||
samples_per_window = (vad_window_length * sampling_rate) // 1000
|
||||
|
||||
# Trim the end of the audio to have a multiple of the window size
|
||||
wav = wav[:len(wav) - (len(wav) % samples_per_window)]
|
||||
|
||||
# Convert the float waveform to 16-bit mono PCM
|
||||
pcm_wave = struct.pack("%dh" % len(wav),
|
||||
*(np.round(wav * int16_max)).astype(np.int16))
|
||||
|
||||
# Perform voice activation detection
|
||||
voice_flags = []
|
||||
vad = webrtcvad.Vad(mode=3)
|
||||
for window_start in range(0, len(wav), samples_per_window):
|
||||
window_end = window_start + samples_per_window
|
||||
voice_flags.append(
|
||||
vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
|
||||
sample_rate=sampling_rate))
|
||||
voice_flags = np.array(voice_flags)
|
||||
|
||||
# Smooth the voice detection with a moving average
|
||||
def moving_average(array, width):
|
||||
array_padded = np.concatenate((np.zeros(
|
||||
(width - 1) // 2), array, np.zeros(width // 2)))
|
||||
ret = np.cumsum(array_padded, dtype=float)
|
||||
ret[width:] = ret[width:] - ret[:-width]
|
||||
return ret[width - 1:] / width
|
||||
|
||||
audio_mask = moving_average(voice_flags, vad_moving_average_width)
|
||||
audio_mask = np.round(audio_mask).astype(np.bool)
|
||||
|
||||
# Dilate the voiced regions
|
||||
audio_mask = binary_dilation(audio_mask,
|
||||
np.ones(vad_max_silence_length + 1))
|
||||
audio_mask = np.repeat(audio_mask, samples_per_window)
|
||||
|
||||
return wav[audio_mask == True]
|
||||
|
||||
|
||||
def compute_partial_slices(n_samples: int,
|
||||
partial_utterance_n_frames: int,
|
||||
hop_length: int,
|
||||
min_pad_coverage: float = 0.75,
|
||||
overlap: float = 0.5):
|
||||
"""
|
||||
Computes where to split an utterance waveform and its corresponding mel spectrogram to obtain
|
||||
partial utterances of <partial_utterance_n_frames> each. Both the waveform and the mel
|
||||
spectrogram slices are returned, so as to make each partial utterance waveform correspond to
|
||||
its spectrogram. This function assumes that the mel spectrogram parameters used are those
|
||||
defined in params_data.py.
|
||||
|
||||
The returned ranges may be indexing further than the length of the waveform. It is
|
||||
recommended that you pad the waveform with zeros up to wave_slices[-1].stop.
|
||||
|
||||
:param n_samples: the number of samples in the waveform
|
||||
:param partial_utterance_n_frames: the number of mel spectrogram frames in each partial
|
||||
utterance
|
||||
:param min_pad_coverage: when reaching the last partial utterance, it may or may not have
|
||||
enough frames. If at least <min_pad_coverage> of <partial_utterance_n_frames> are present,
|
||||
then the last partial utterance will be considered, as if we padded the audio. Otherwise,
|
||||
it will be discarded, as if we trimmed the audio. If there aren't enough frames for 1 partial
|
||||
utterance, this parameter is ignored so that the function always returns at least 1 slice.
|
||||
:param overlap: by how much the partial utterance should overlap. If set to 0, the partial
|
||||
utterances are entirely disjoint.
|
||||
:return: the waveform slices and mel spectrogram slices as lists of array slices. Index
|
||||
respectively the waveform and the mel spectrogram with these slices to obtain the partial
|
||||
utterances.
|
||||
"""
|
||||
assert 0 <= overlap < 1
|
||||
assert 0 < min_pad_coverage <= 1
|
||||
|
||||
# librosa's function to compute num_frames from num_samples
|
||||
n_frames = int(np.ceil((n_samples + 1) / hop_length))
|
||||
# frame shift between ajacent partials
|
||||
frame_step = max(1,
|
||||
int(np.round(partial_utterance_n_frames * (1 - overlap))))
|
||||
|
||||
# Compute the slices
|
||||
wav_slices, mel_slices = [], []
|
||||
steps = max(1, n_frames - partial_utterance_n_frames + frame_step + 1)
|
||||
for i in range(0, steps, frame_step):
|
||||
mel_range = np.array([i, i + partial_utterance_n_frames])
|
||||
wav_range = mel_range * hop_length
|
||||
mel_slices.append(slice(*mel_range))
|
||||
wav_slices.append(slice(*wav_range))
|
||||
|
||||
# Evaluate whether extra padding is warranted or not
|
||||
last_wav_range = wav_slices[-1]
|
||||
coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop -
|
||||
last_wav_range.start)
|
||||
if coverage < min_pad_coverage and len(mel_slices) > 1:
|
||||
mel_slices = mel_slices[:-1]
|
||||
wav_slices = wav_slices[:-1]
|
||||
|
||||
return wav_slices, mel_slices
|
||||
|
||||
|
||||
class SpeakerVerificationPreprocessor(object):
|
||||
def __init__(self,
|
||||
sampling_rate: int,
|
||||
audio_norm_target_dBFS:float,
|
||||
vad_window_length,
|
||||
vad_moving_average_width,
|
||||
vad_max_silence_length,
|
||||
mel_window_length,
|
||||
mel_window_step,
|
||||
n_mels,
|
||||
partial_n_frames: int,
|
||||
min_pad_coverage: float = 0.75,
|
||||
partial_overlap_ratio: float = 0.5):
|
||||
self.sampling_rate = sampling_rate
|
||||
self.audio_norm_target_dBFS = audio_norm_target_dBFS
|
||||
|
||||
self.vad_window_length = vad_window_length
|
||||
self.vad_moving_average_width = vad_moving_average_width
|
||||
self.vad_max_silence_length = vad_max_silence_length
|
||||
|
||||
self.n_fft = int(mel_window_length * sampling_rate / 1000)
|
||||
self.hop_length = int(mel_window_step * sampling_rate / 1000)
|
||||
self.n_mels = n_mels
|
||||
|
||||
self.partial_n_frames = partial_n_frames
|
||||
self.min_pad_coverage = min_pad_coverage
|
||||
self.partial_overlap_ratio = partial_overlap_ratio
|
||||
|
||||
def preprocess_wav(self, fpath_or_wav, source_sr=None):
|
||||
# Load the wav from disk if needed
|
||||
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
|
||||
wav, source_sr = librosa.load(str(fpath_or_wav), sr=None)
|
||||
else:
|
||||
wav = fpath_or_wav
|
||||
|
||||
# Resample if numpy.array is passed and sr does not match
|
||||
if source_sr is not None and source_sr != self.sampling_rate:
|
||||
wav = librosa.resample(wav, source_sr, self.sampling_rate)
|
||||
|
||||
# loudness normalization
|
||||
wav = normalize_volume(wav,
|
||||
self.audio_norm_target_dBFS,
|
||||
increase_only=True)
|
||||
|
||||
# trim long silence
|
||||
if webrtcvad:
|
||||
wav = trim_long_silences(wav, self.vad_window_length,
|
||||
self.vad_moving_average_width,
|
||||
self.vad_max_silence_length,
|
||||
self.sampling_rate)
|
||||
return wav
|
||||
|
||||
def melspectrogram(self, wav):
|
||||
mel = librosa.feature.melspectrogram(wav,
|
||||
sr=self.sampling_rate,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels)
|
||||
mel = mel.astype(np.float32).T
|
||||
return mel
|
||||
|
||||
def extract_mel_partials(self, wav):
|
||||
wav_slices, mel_slices = compute_partial_slices(
|
||||
len(wav),
|
||||
self.partial_n_frames,
|
||||
self.hop_length,
|
||||
self.min_pad_coverage,
|
||||
self.partial_overlap_ratio)
|
||||
|
||||
# pad audio if needed
|
||||
max_wave_length = wav_slices[-1].stop
|
||||
if max_wave_length >= len(wav):
|
||||
wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
|
||||
|
||||
# Split the utterance into partials
|
||||
frames = self.melspectrogram(wav)
|
||||
frames_batch = np.array([frames[s] for s in mel_slices])
|
||||
return frames_batch # [B, T, C]
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
from yacs.config import CfgNode
|
||||
|
||||
_C = CfgNode()
|
||||
|
||||
data_config = _C.data = CfgNode()
|
||||
|
||||
## Audio volume normalization
|
||||
data_config.audio_norm_target_dBFS = -30
|
||||
|
||||
## Audio sample rate
|
||||
data_config.sampling_rate = 16000 # Hz
|
||||
|
||||
## Voice Activation Detection
|
||||
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
|
||||
# This sets the granularity of the VAD. Should not need to be changed.
|
||||
data_config.vad_window_length = 30 # In milliseconds
|
||||
# Number of frames to average together when performing the moving average smoothing.
|
||||
# The larger this value, the larger the VAD variations must be to not get smoothed out.
|
||||
data_config.vad_moving_average_width = 8
|
||||
# Maximum number of consecutive silent frames a segment can have.
|
||||
data_config.vad_max_silence_length = 6
|
||||
|
||||
## Mel-filterbank
|
||||
data_config.mel_window_length = 25 # In milliseconds
|
||||
data_config.mel_window_step = 10 # In milliseconds
|
||||
data_config.n_mels = 40 # mel bands
|
||||
|
||||
# Number of spectrogram frames in a partial utterance
|
||||
data_config.partial_n_frames = 160 # 1600 ms
|
||||
data_config.min_pad_coverage = 0.75 # at least 75% of the audio is valid in a partial
|
||||
data_config.partial_overlap_ratio = 0.5 # overlap ratio between ajancent partials
|
||||
|
||||
model_config = _C.model = CfgNode()
|
||||
model_config.num_layers = 3
|
||||
model_config.hidden_size = 256
|
||||
model_config.embedding_size = 256 # output size
|
||||
|
||||
training_config = _C.training = CfgNode()
|
||||
training_config.learning_rate_init = 1e-4
|
||||
training_config.speakers_per_batch = 64
|
||||
training_config.utterances_per_speaker = 10
|
||||
training_config.max_iteration = 1560000
|
||||
training_config.save_interval = 10000
|
||||
training_config.valid_interval = 10000
|
||||
|
||||
|
||||
def get_cfg_defaults():
|
||||
return _C.clone()
|
|
@ -0,0 +1,139 @@
|
|||
import numpy as np
|
||||
from pathlib import Path
|
||||
import multiprocessing as mp
|
||||
from audio_processor import SpeakerVerificationPreprocessor
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from typing import List
|
||||
|
||||
def _process_utterance(path_pair, processor: SpeakerVerificationPreprocessor):
|
||||
# Load and preprocess the waveform
|
||||
input_path, output_path = path_pair
|
||||
wav = processor.preprocess_wav(input_path)
|
||||
if len(wav) == 0:
|
||||
return
|
||||
|
||||
# Create the mel spectrogram, discard those that are too short
|
||||
frames = processor.melspectrogram(wav)
|
||||
if len(frames) < processor.partial_n_frames:
|
||||
return
|
||||
|
||||
np.save(output_path, frames)
|
||||
|
||||
|
||||
def _process_speaker(speaker_dir: Path,
|
||||
processor,
|
||||
datasets_root: Path,
|
||||
output_dir: Path,
|
||||
pattern: str,
|
||||
skip_existing:bool=False):
|
||||
# datastes root: a reference path to compute speaker_name
|
||||
# we prepand dataset name to speaker_id becase we are mixing serveal
|
||||
# multispeaker datasets together
|
||||
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
|
||||
speaker_output_dir = output_dir / speaker_name
|
||||
speaker_output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# load exsiting file set
|
||||
sources_fpath = speaker_output_dir / "_sources.txt"
|
||||
if sources_fpath.exists():
|
||||
try:
|
||||
with sources_fpath.open("rt") as sources_file:
|
||||
existing_names = {line.split(",")[0] for line in sources_file}
|
||||
except:
|
||||
existing_names = {}
|
||||
else:
|
||||
existing_names = {}
|
||||
|
||||
sources_file = sources_fpath.open("at" if skip_existing else "wt")
|
||||
for in_fpath in speaker_dir.rglob(pattern):
|
||||
out_name = "_".join(in_fpath.relative_to(speaker_dir).with_suffix(".npy").parts)
|
||||
if skip_existing and out_name in existing_names:
|
||||
continue
|
||||
out_fpath = speaker_output_dir / out_name
|
||||
_process_utterance((in_fpath, out_fpath), processor)
|
||||
sources_file.write(f"{out_name},{in_fpath}\n")
|
||||
|
||||
sources_file.close()
|
||||
|
||||
|
||||
def _process_dataset(processor,
|
||||
datasets_root: Path,
|
||||
speaker_dirs: List[Path],
|
||||
dataset_name: str,
|
||||
output_dir: Path,
|
||||
pattern: str,
|
||||
skip_existing: bool =False):
|
||||
print(f"{dataset_name}: Preprocessing data for {len(speaker_dirs)} speakers.")
|
||||
|
||||
_func = partial(_process_speaker,
|
||||
processor=processor,
|
||||
datasets_root=datasets_root,
|
||||
output_dir=output_dir,
|
||||
pattern=pattern,
|
||||
skip_existing=skip_existing)
|
||||
|
||||
with mp.Pool(16) as pool:
|
||||
list(
|
||||
tqdm(pool.imap(_func, speaker_dirs),
|
||||
dataset_name,
|
||||
len(speaker_dirs),
|
||||
unit="speakers"))
|
||||
print(f"Done preprocessing {dataset_name}.")
|
||||
|
||||
|
||||
def process_librispeech(processor,
|
||||
datasets_root,
|
||||
output_dir,
|
||||
skip_existing=False):
|
||||
dataset_name = "LibriSpeech/train-other-500"
|
||||
dataset_root = datasets_root / dataset_name
|
||||
speaker_dirs = list(dataset_root.glob("*"))
|
||||
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
|
||||
output_dir, "*.flac", skip_existing)
|
||||
|
||||
|
||||
def process_voxceleb1(processor,
|
||||
datasets_root,
|
||||
output_dir,
|
||||
skip_existing=False):
|
||||
dataset_name = "VoxCeleb1"
|
||||
dataset_root = datasets_root / dataset_name
|
||||
|
||||
anglophone_nationalites = ["australia", "canada", "ireland", "uk", "usa"]
|
||||
with dataset_root.joinpath("vox1_meta.csv").open("rt") as metafile:
|
||||
metadata = [line.strip().split("\t") for line in metafile][1:]
|
||||
|
||||
# speaker id -> nationality
|
||||
nationalities = {
|
||||
line[0]: line[3]
|
||||
for line in metadata if line[-1] == "dev"
|
||||
}
|
||||
keep_speaker_ids = [
|
||||
speaker_id for speaker_id, nationality in nationalities.items()
|
||||
if nationality.lower() in anglophone_nationalites
|
||||
]
|
||||
print(
|
||||
"VoxCeleb1: using samples from {} (presumed anglophone) speakers out of {}.".format(
|
||||
len(keep_speaker_ids), len(nationalities)))
|
||||
|
||||
speaker_dirs = list((dataset_root / "wav").glob("*"))
|
||||
speaker_dirs = [
|
||||
speaker_dir for speaker_dir in speaker_dirs
|
||||
if speaker_dir.name in keep_speaker_ids
|
||||
]
|
||||
# TODO: filter ansa
|
||||
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
|
||||
output_dir, "*.wav", skip_existing)
|
||||
|
||||
|
||||
def process_voxceleb2(processor,
|
||||
datasets_root,
|
||||
output_dir,
|
||||
skip_existing=False):
|
||||
dataset_name = "VoxCeleb2"
|
||||
dataset_root = datasets_root / dataset_name
|
||||
# There is no nationality in meta data for VoxCeleb2
|
||||
speaker_dirs = list((dataset_root / "wav").glob("*"))
|
||||
_process_dataset(processor, datasets_root, speaker_dirs, dataset_name,
|
||||
output_dir, "*.wav", skip_existing)
|
|
@ -0,0 +1,126 @@
|
|||
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
|
||||
from audio_processor import SpeakerVerificationPreprocessor
|
||||
from matplotlib import cm
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from config import get_cfg_defaults
|
||||
import argparse
|
||||
import paddle
|
||||
import tqdm
|
||||
from functools import partial
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
||||
def embed_utterance(processor, model, fpath_or_wav):
|
||||
# audio processor
|
||||
wav = processor.preprocess_wav(fpath_or_wav)
|
||||
mel_partials = processor.extract_mel_partials(wav)
|
||||
|
||||
model.eval()
|
||||
# speaker encoder
|
||||
with paddle.no_grad():
|
||||
mel_partials = paddle.to_tensor(mel_partials)
|
||||
with paddle.no_grad():
|
||||
embed = model.embed_utterance(mel_partials)
|
||||
embed = embed.numpy()
|
||||
return embed
|
||||
|
||||
|
||||
def _process_utterance(ifpath: Path, input_dir: Path, output_dir: Path,
|
||||
processor: SpeakerVerificationPreprocessor,
|
||||
model: LSTMSpeakerEncoder):
|
||||
rel_path = ifpath.relative_to(input_dir)
|
||||
ofpath = (output_dir / rel_path).with_suffix(".npy")
|
||||
ofpath.parent.mkdir(parents=True, exist_ok=True)
|
||||
embed = embed_utterance(processor, model, ifpath)
|
||||
np.save(ofpath, embed)
|
||||
|
||||
|
||||
def main(config, args):
|
||||
paddle.set_device(args.device)
|
||||
|
||||
# load model
|
||||
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
|
||||
config.model.hidden_size,
|
||||
config.model.embedding_size)
|
||||
weights_fpath = str(Path(args.checkpoint_path).expanduser())
|
||||
model_state_dict = paddle.load(weights_fpath + ".pdparams")
|
||||
model.set_state_dict(model_state_dict)
|
||||
model.eval()
|
||||
print(f"Loaded encoder {weights_fpath}")
|
||||
|
||||
# create audio processor
|
||||
c = config.data
|
||||
processor = SpeakerVerificationPreprocessor(
|
||||
sampling_rate=c.sampling_rate,
|
||||
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
|
||||
vad_window_length=c.vad_window_length,
|
||||
vad_moving_average_width=c.vad_moving_average_width,
|
||||
vad_max_silence_length=c.vad_max_silence_length,
|
||||
mel_window_length=c.mel_window_length,
|
||||
mel_window_step=c.mel_window_step,
|
||||
n_mels=c.n_mels,
|
||||
partial_n_frames=c.partial_n_frames,
|
||||
min_pad_coverage=c.min_pad_coverage,
|
||||
partial_overlap_ratio=c.min_pad_coverage,
|
||||
)
|
||||
|
||||
# input output preparation
|
||||
input_dir = Path(args.input).expanduser()
|
||||
ifpaths = list(input_dir.rglob(args.pattern))
|
||||
print(f"{len(ifpaths)} utterances in total")
|
||||
output_dir = Path(args.output).expanduser()
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for ifpath in tqdm.tqdm(ifpaths, unit="utterance"):
|
||||
_process_utterance(ifpath, input_dir, output_dir, processor, model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = get_cfg_defaults()
|
||||
parser = argparse.ArgumentParser(description="compute utterance embed.")
|
||||
parser.add_argument(
|
||||
"--config",
|
||||
metavar="FILE",
|
||||
help="path of the config file to overwrite to default config with.")
|
||||
parser.add_argument("--input",
|
||||
type=str,
|
||||
help="path of the audio_file folder.")
|
||||
parser.add_argument("--pattern",
|
||||
type=str,
|
||||
default="*.wav",
|
||||
help="pattern to filter audio files.")
|
||||
parser.add_argument("--output",
|
||||
metavar="OUTPUT_DIR",
|
||||
help="path to save checkpoint and logs.")
|
||||
|
||||
# load from saved checkpoint
|
||||
parser.add_argument("--checkpoint_path",
|
||||
type=str,
|
||||
help="path of the checkpoint to load")
|
||||
|
||||
# running
|
||||
parser.add_argument("--device",
|
||||
type=str,
|
||||
choices=["cpu", "gpu"],
|
||||
help="device type to use, cpu and gpu are supported.")
|
||||
|
||||
# overwrite extra config and default config
|
||||
parser.add_argument(
|
||||
"--opts",
|
||||
nargs=argparse.REMAINDER,
|
||||
help=
|
||||
"options to overwrite --config file and the default config, passing in KEY VALUE pairs"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.config:
|
||||
config.merge_from_file(args.config)
|
||||
if args.opts:
|
||||
config.merge_from_list(args.opts)
|
||||
config.freeze()
|
||||
print(config)
|
||||
print(args)
|
||||
|
||||
main(config, args)
|
|
@ -0,0 +1,88 @@
|
|||
import argparse
|
||||
from pathlib import Path
|
||||
from config import get_cfg_defaults
|
||||
from audio_processor import SpeakerVerificationPreprocessor
|
||||
from dataset_processors import process_librispeech, process_voxceleb1, process_voxceleb2
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="preprocess dataset for speaker verification task")
|
||||
parser.add_argument(
|
||||
"--datasets_root",
|
||||
type=Path,
|
||||
help=
|
||||
"Path to the directory containing your LibriSpeech, LibriTTS and VoxCeleb datasets."
|
||||
)
|
||||
parser.add_argument("--output_dir",
|
||||
type=Path,
|
||||
help="Path to save processed dataset.")
|
||||
parser.add_argument(
|
||||
"--dataset_names",
|
||||
type=str,
|
||||
default="librispeech_other,voxceleb1,voxceleb2",
|
||||
help=
|
||||
"comma-separated list of names of the datasets you want to preprocess. only "
|
||||
"the train set of these datastes will be used. Possible names: librispeech_other, "
|
||||
"voxceleb1, voxceleb2.")
|
||||
parser.add_argument(
|
||||
"--skip_existing",
|
||||
action="store_true",
|
||||
help=
|
||||
"Whether to skip ouput files with the same name. Useful if this script was interrupted."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no_trim",
|
||||
action="store_true",
|
||||
help="Preprocess audio without trimming silences (not recommended).")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.no_trim:
|
||||
try:
|
||||
import webrtcvad
|
||||
except:
|
||||
raise ModuleNotFoundError(
|
||||
"Package 'webrtcvad' not found. This package enables "
|
||||
"noise removal and is recommended. Please install and try again. If installation fails, "
|
||||
"use --no_trim to disable this error message.")
|
||||
del args.no_trim
|
||||
|
||||
args.datasets = [item.strip() for item in args.dataset_names.split(",")]
|
||||
if not hasattr(args, "output_dir"):
|
||||
args.output_dir = args.dataset_root / "SV2TTS" / "encoder"
|
||||
|
||||
args.output_dir = args.output_dir.expanduser()
|
||||
args.datasets_root = args.datasets_root.expanduser()
|
||||
assert args.datasets_root.exists()
|
||||
args.output_dir.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
config = get_cfg_defaults()
|
||||
# TODO: nice print
|
||||
print(args)
|
||||
|
||||
c = config.data
|
||||
processor = SpeakerVerificationPreprocessor(
|
||||
sampling_rate=c.sampling_rate,
|
||||
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
|
||||
vad_window_length=c.vad_window_length,
|
||||
vad_moving_average_width=c.vad_moving_average_width,
|
||||
vad_max_silence_length=c.vad_max_silence_length,
|
||||
mel_window_length=c.mel_window_length,
|
||||
mel_window_step=c.mel_window_step,
|
||||
n_mels=c.n_mels,
|
||||
partial_n_frames=c.partial_n_frames,
|
||||
min_pad_coverage=c.min_pad_coverage,
|
||||
partial_overlap_ratio=c.min_pad_coverage,
|
||||
)
|
||||
|
||||
preprocess_func = {
|
||||
"librispeech_other": process_librispeech,
|
||||
"voxceleb1": process_voxceleb1,
|
||||
"voxceleb2": process_voxceleb2,
|
||||
}
|
||||
|
||||
for dataset in args.datasets:
|
||||
print("Preprocessing %s" % dataset)
|
||||
preprocess_func[dataset](processor, args.datasets_root, args.output_dir, args.skip_existing)
|
||||
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
import random
|
||||
|
||||
def cycle(iterable):
|
||||
# cycle('ABCD') --> A B C D A B C D A B C D ...
|
||||
saved = []
|
||||
for element in iterable:
|
||||
yield element
|
||||
saved.append(element)
|
||||
while saved:
|
||||
for element in saved:
|
||||
yield element
|
||||
|
||||
def random_cycle(iterable):
|
||||
# cycle('ABCD') --> A B C D B C D A A D B C ...
|
||||
saved = []
|
||||
for element in iterable:
|
||||
yield element
|
||||
saved.append(element)
|
||||
random.shuffle(saved)
|
||||
while saved:
|
||||
for element in saved:
|
||||
yield element
|
||||
random.shuffle(saved)
|
|
@ -0,0 +1,114 @@
|
|||
import random
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle.io import Dataset, BatchSampler
|
||||
from pathlib import Path
|
||||
from random_cycle import random_cycle
|
||||
|
||||
|
||||
class MultiSpeakerMelDataset(Dataset):
|
||||
"""A 2 layer directory thatn contains mel spectrograms in *.npy format.
|
||||
An Example file structure tree is shown below. We prefer to preprocess
|
||||
raw datasets and organized them like this.
|
||||
|
||||
dataset_root/
|
||||
speaker1/
|
||||
utterance1.npy
|
||||
utterance2.npy
|
||||
utterance3.npy
|
||||
speaker2/
|
||||
utterance1.npy
|
||||
utterance2.npy
|
||||
utterance3.npy
|
||||
"""
|
||||
def __init__(self, dataset_root: Path):
|
||||
self.root = Path(dataset_root).expanduser()
|
||||
speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()]
|
||||
|
||||
speaker_utterances = {
|
||||
speaker_dir: [f for f in speaker_dir.glob("*.npy")]
|
||||
for speaker_dir in speaker_dirs
|
||||
}
|
||||
|
||||
self.speaker_dirs = speaker_dirs
|
||||
self.speaker_to_utterances = speaker_utterances
|
||||
|
||||
# meta data
|
||||
self.num_speakers = len(self.speaker_dirs)
|
||||
self.num_utterances = np.sum(
|
||||
len(utterances)
|
||||
for speaker, utterances in self.speaker_to_utterances.items())
|
||||
|
||||
def get_example_by_index(self, speaker_index, utterance_index):
|
||||
speaker_dir = self.speaker_dirs[speaker_index]
|
||||
fpath = self.speaker_to_utterances[speaker_dir][utterance_index]
|
||||
return self[fpath]
|
||||
|
||||
def __getitem__(self, fpath):
|
||||
return np.load(fpath)
|
||||
|
||||
def __len__(self):
|
||||
return int(self.num_utterances())
|
||||
|
||||
|
||||
class MultiSpeakerSampler(BatchSampler):
|
||||
"""A multi-stratal sampler designed for speaker verification task.
|
||||
First, N speakers from all speakers are sampled randomly. Then, for each
|
||||
speaker, randomly sample M utterances from their corresponding utterances.
|
||||
"""
|
||||
def __init__(self,
|
||||
dataset: MultiSpeakerMelDataset,
|
||||
speakers_per_batch: int,
|
||||
utterances_per_speaker: int):
|
||||
self._speakers = list(dataset.speaker_dirs)
|
||||
self._speaker_to_utterances = dataset.speaker_to_utterances
|
||||
|
||||
self.speakers_per_batch = speakers_per_batch
|
||||
self.utterances_per_speaker = utterances_per_speaker
|
||||
|
||||
def __iter__(self):
|
||||
# yield list of Paths
|
||||
speaker_generator = iter(random_cycle(self._speakers))
|
||||
speaker_utterances_generator = {
|
||||
s: iter(random_cycle(us))
|
||||
for s, us in self._speaker_to_utterances.items()
|
||||
}
|
||||
|
||||
while True:
|
||||
speakers = []
|
||||
for _ in range(self.speakers_per_batch):
|
||||
speakers.append(next(speaker_generator))
|
||||
|
||||
utterances = []
|
||||
for s in speakers:
|
||||
us = speaker_utterances_generator[s]
|
||||
for _ in range(self.utterances_per_speaker):
|
||||
utterances.append(next(us))
|
||||
yield utterances
|
||||
|
||||
|
||||
class RandomClip(object):
|
||||
def __init__(self, frames):
|
||||
self.frames = frames
|
||||
|
||||
def __call__(self, spec):
|
||||
# spec [T, C]
|
||||
T = spec.shape[0]
|
||||
start = random.randint(0, T - self.frames)
|
||||
return spec[start:start + self.frames, :]
|
||||
|
||||
|
||||
class Collate(object):
|
||||
def __init__(self, num_frames):
|
||||
self.random_crop = RandomClip(num_frames)
|
||||
|
||||
def __call__(self, examples):
|
||||
frame_clips = [self.random_crop(mel) for mel in examples]
|
||||
batced_clips = np.stack(frame_clips)
|
||||
return batced_clips
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mydataset = MultiSpeakerMelDataset(
|
||||
Path("/home/chenfeiyu/datasets/SV2TTS/encoder"))
|
||||
print(mydataset.get_example_by_index(0, 10))
|
|
@ -0,0 +1,105 @@
|
|||
from parakeet.training import ExperimentBase, default_argument_parser
|
||||
from config import get_cfg_defaults
|
||||
from paddle import distributed as dist
|
||||
import time
|
||||
from paddle.nn.clip import ClipGradByGlobalNorm
|
||||
|
||||
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
|
||||
from speaker_verification_dataset import MultiSpeakerMelDataset, MultiSpeakerSampler, Collate
|
||||
from paddle.optimizer import Adam
|
||||
from paddle import DataParallel
|
||||
from paddle.io import DataLoader
|
||||
|
||||
|
||||
class Ge2eExperiment(ExperimentBase):
|
||||
def setup_model(self):
|
||||
config = self.config
|
||||
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
|
||||
config.model.hidden_size,
|
||||
config.model.embedding_size)
|
||||
optimizer = Adam(config.training.learning_rate_init,
|
||||
parameters=model.parameters(),
|
||||
grad_clip=ClipGradByGlobalNorm(3))
|
||||
self.model = DataParallel(model) if self.parallel else model
|
||||
self.model_core = model
|
||||
self.optimizer = optimizer
|
||||
|
||||
def setup_dataloader(self):
|
||||
config = self.config
|
||||
train_dataset = MultiSpeakerMelDataset(self.args.data)
|
||||
sampler = MultiSpeakerSampler(train_dataset,
|
||||
config.training.speakers_per_batch,
|
||||
config.training.utterances_per_speaker)
|
||||
train_loader = DataLoader(train_dataset,
|
||||
batch_sampler=sampler,
|
||||
collate_fn=Collate(
|
||||
config.data.partial_n_frames),
|
||||
num_workers=16)
|
||||
|
||||
self.train_dataset = train_dataset
|
||||
self.train_loader = train_loader
|
||||
|
||||
def train_batch(self):
|
||||
start = time.time()
|
||||
batch = self.read_batch()
|
||||
data_loader_time = time.time() - start
|
||||
|
||||
self.optimizer.clear_grad()
|
||||
self.model.train()
|
||||
specs = batch
|
||||
loss, eer = self.model(specs, self.config.training.speakers_per_batch)
|
||||
loss.backward()
|
||||
self.model_core.do_gradient_ops()
|
||||
self.optimizer.step()
|
||||
iteration_time = time.time() - start
|
||||
|
||||
# logging
|
||||
loss_value = float(loss)
|
||||
msg = "Rank: {}, ".format(dist.get_rank())
|
||||
msg += "step: {}, ".format(self.iteration)
|
||||
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
||||
iteration_time)
|
||||
msg += 'loss: {:>.6f} err: {:>.6f}'.format(loss_value, eer)
|
||||
self.logger.info(msg)
|
||||
|
||||
if dist.get_rank() == 0:
|
||||
self.visualizer.add_scalar("train/loss", loss_value,
|
||||
self.iteration)
|
||||
self.visualizer.add_scalar("train/eer", eer, self.iteration)
|
||||
self.visualizer.add_scalar("param/w",
|
||||
float(self.model_core.similarity_weight),
|
||||
self.iteration)
|
||||
self.visualizer.add_scalar("param/b",
|
||||
float(self.model_core.similarity_bias),
|
||||
self.iteration)
|
||||
|
||||
def valid(self):
|
||||
pass
|
||||
|
||||
|
||||
def main_sp(config, args):
|
||||
exp = Ge2eExperiment(config, args)
|
||||
exp.setup()
|
||||
exp.run()
|
||||
|
||||
|
||||
def main(config, args):
|
||||
if args.nprocs > 1 and args.device == "gpu":
|
||||
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
||||
else:
|
||||
main_sp(config, args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = get_cfg_defaults()
|
||||
parser = default_argument_parser()
|
||||
args = parser.parse_args()
|
||||
if args.config:
|
||||
config.merge_from_file(args.config)
|
||||
if args.opts:
|
||||
config.merge_from_list(args.opts)
|
||||
config.freeze()
|
||||
print(config)
|
||||
print(args)
|
||||
|
||||
main(config, args)
|
|
@ -0,0 +1,120 @@
|
|||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.nn import functional as F
|
||||
from paddle.nn import initializer as I
|
||||
|
||||
from scipy.interpolate import interp1d
|
||||
from sklearn.metrics import roc_curve
|
||||
from scipy.optimize import brentq
|
||||
|
||||
|
||||
class LSTMSpeakerEncoder(nn.Layer):
|
||||
def __init__(self, n_mels, num_layers, hidden_size, output_size):
|
||||
super().__init__()
|
||||
self.lstm = nn.LSTM(n_mels, hidden_size, num_layers)
|
||||
self.linear = nn.Linear(hidden_size, output_size)
|
||||
self.similarity_weight = self.create_parameter(
|
||||
[1], default_initializer=I.Constant(10.))
|
||||
self.similarity_bias = self.create_parameter(
|
||||
[1], default_initializer=I.Constant(-5.))
|
||||
|
||||
def forward(self, utterances, num_speakers, initial_states=None):
|
||||
normalized_embeds = self.embed_sequences(utterances, initial_states)
|
||||
embeds = normalized_embeds.reshape([num_speakers, -1, num_speakers])
|
||||
loss, eer = self.loss(embeds)
|
||||
return loss, eer
|
||||
|
||||
def embed_sequences(self, utterances, initial_states=None, reduce=False):
|
||||
out, (h, c) = self.lstm(utterances, initial_states)
|
||||
embeds = F.relu(self.linear(h[-1]))
|
||||
normalized_embeds = F.normalize(embeds)
|
||||
if reduce:
|
||||
embed = paddle.mean(normalized_embeds, 0)
|
||||
embed = F.normalize(embed, axis=0)
|
||||
return normalized_embeds
|
||||
|
||||
def embed_utterance(self, utterances, initial_states=None):
|
||||
# utterances: [B, T, C] -> embed [C']
|
||||
embed = self.embed_sequences(utterances, initial_states, reduce=True)
|
||||
return embed
|
||||
|
||||
def similarity_matrix(self, embeds):
|
||||
# (N, M, C)
|
||||
speakers_per_batch, utterances_per_speaker, embed_dim = embeds.shape
|
||||
|
||||
# Inclusive centroids (1 per speaker). Cloning is needed for reverse differentiation
|
||||
centroids_incl = paddle.mean(embeds, axis=1)
|
||||
centroids_incl_norm = paddle.norm(centroids_incl, p=2, axis=1, keepdim=True)
|
||||
normalized_centroids_incl = centroids_incl / centroids_incl_norm
|
||||
|
||||
# Exclusive centroids (1 per utterance)
|
||||
centroids_excl = paddle.broadcast_to(paddle.sum(embeds, axis=1, keepdim=True), embeds.shape) - embeds
|
||||
centroids_excl /= (utterances_per_speaker - 1)
|
||||
centroids_excl_norm = paddle.norm(centroids_excl, p=2, axis=2, keepdim=True)
|
||||
normalized_centroids_excl = centroids_excl / centroids_excl_norm
|
||||
|
||||
p1 = paddle.matmul(embeds.reshape([-1, embed_dim]),
|
||||
normalized_centroids_incl, transpose_y=True) # (NMN)
|
||||
p1 = p1.reshape([-1])
|
||||
# print("p1: ", p1.shape)
|
||||
p2 = paddle.bmm(embeds.reshape([-1, 1, embed_dim]),
|
||||
normalized_centroids_excl.reshape([-1, embed_dim, 1])) # (NM, 1, 1)
|
||||
p2 = p2.reshape([-1]) # (NM)
|
||||
|
||||
# begin: alternative implementation for scatter
|
||||
with paddle.no_grad():
|
||||
index = paddle.arange(0, speakers_per_batch * utterances_per_speaker, dtype="int64").reshape([speakers_per_batch, utterances_per_speaker])
|
||||
index = index * speakers_per_batch + paddle.arange(0, speakers_per_batch, dtype="int64").unsqueeze(-1)
|
||||
index = paddle.reshape(index, [-1])
|
||||
ones = paddle.ones([speakers_per_batch * utterances_per_speaker * speakers_per_batch])
|
||||
zeros = paddle.zeros_like(index, dtype=ones.dtype)
|
||||
mask_p1 = paddle.scatter(ones, index, zeros)
|
||||
p = p1 * mask_p1 + (1 - mask_p1) * paddle.scatter(ones, index, p2)
|
||||
# end: alternative implementation for scatter
|
||||
# p = paddle.scatter(p1, index, p2)
|
||||
|
||||
p = p * self.similarity_weight + self.similarity_bias # neg
|
||||
p = p.reshape([speakers_per_batch * utterances_per_speaker, speakers_per_batch])
|
||||
return p, p1, p2
|
||||
|
||||
def do_gradient_ops(self):
|
||||
for p in [self.similarity_weight, self.similarity_bias]:
|
||||
g = p._grad_ivar()
|
||||
g[...] = g * 0.01
|
||||
|
||||
def loss(self, embeds):
|
||||
"""
|
||||
Computes the softmax loss according the section 2.1 of GE2E.
|
||||
|
||||
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
|
||||
utterances_per_speaker, embedding_size)
|
||||
:return: the loss and the EER for this batch of embeddings.
|
||||
"""
|
||||
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
|
||||
|
||||
# Loss
|
||||
sim_matrix, *_ = self.similarity_matrix(embeds)
|
||||
sim_matrix = sim_matrix.reshape(
|
||||
[speakers_per_batch * utterances_per_speaker, speakers_per_batch])
|
||||
target = paddle.arange(0, speakers_per_batch, dtype="int64").unsqueeze(-1)
|
||||
target = paddle.expand(target, [speakers_per_batch, utterances_per_speaker])
|
||||
target = paddle.reshape(target, [-1])
|
||||
|
||||
loss = nn.CrossEntropyLoss()(sim_matrix, target)
|
||||
|
||||
# EER (not backpropagated)
|
||||
with paddle.no_grad():
|
||||
ground_truth = target.numpy()
|
||||
inv_argmax = lambda i: np.eye(1, speakers_per_batch, i, dtype=np.int)[0]
|
||||
labels = np.array([inv_argmax(i) for i in ground_truth])
|
||||
preds = sim_matrix.numpy()
|
||||
|
||||
# Snippet from https://yangcha.github.io/EER-ROC/
|
||||
fpr, tpr, thresholds = roc_curve(labels.flatten(), preds.flatten())
|
||||
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
|
||||
|
||||
return loss, eer
|
||||
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
from paddle.nn import initializer as I
|
||||
|
||||
|
||||
class GE2ELoss(nn.Layer):
|
||||
def __init__(self, init_w=10., init_b=-5.):
|
||||
super().__init__()
|
||||
self.w = self.create_parameter([1], attr=I.Constant(init_w))
|
||||
self.b = self.create_parameter([1], attr=I.Constant(init_b))
|
||||
|
||||
def forward(self, embeds):
|
||||
# embeds [N, M, C]
|
||||
# N - speakers_per_batch,
|
||||
# M - utterances_per_speaker
|
||||
# C - embed_dim
|
||||
sim_matrix = self._build_sim_matrix(embeds)
|
||||
_, M, N = sim_matrix.shape
|
||||
target = paddle.arange(0, N, dtype="int64").unsqueeze(-1)
|
||||
target = paddle.expand(target, [N, M])
|
||||
target = paddle.reshape(target, [-1]) # [NM]
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
loss = criterion(sim_matrix.reshape([-1, N]), target)
|
||||
return loss
|
||||
|
||||
def _build_sim_matrix(self, embeds):
|
||||
N, M, C = embeds.shape
|
||||
|
||||
# Inclusive centroids (1 per speaker). [N, C]
|
||||
centroids_incl = paddle.mean(embeds, axis=1)
|
||||
centroids_incl_norm = paddle.norm(centroids_incl,
|
||||
p=2,
|
||||
axis=1,
|
||||
keepdim=True)
|
||||
normalized_centroids_incl = centroids_incl / centroids_incl_norm
|
||||
|
||||
# Exclusive centroids (1 per utterance) [N, M, C]
|
||||
centroids_excl = paddle.broadcast_to(
|
||||
paddle.sum(embeds, axis=1, keepdim=True), embeds.shape) - embeds
|
||||
centroids_excl /= (M - 1)
|
||||
centroids_excl_norm = paddle.norm(centroids_excl,
|
||||
p=2,
|
||||
axis=2,
|
||||
keepdim=True)
|
||||
normalized_centroids_excl = centroids_excl / centroids_excl_norm
|
||||
|
||||
# inter-speaker similarity, NM embeds ~ N centroids
|
||||
# [NM, N]
|
||||
p1 = paddle.matmul(embeds.reshape([-1, C]),
|
||||
normalized_centroids_incl,
|
||||
transpose_y=True)
|
||||
p1 = p1.reshape([-1]) # [NMN]
|
||||
|
||||
# intra-similarity, NM embeds, 1 centroid per embed
|
||||
p2 = paddle.bmm(embeds.reshape([-1, 1, C]),
|
||||
normalized_centroids_excl.reshape([-1, C,
|
||||
1])) # (NM, 1, 1)
|
||||
p2 = p2.reshape([-1]) # [NM]
|
||||
|
||||
with paddle.no_grad():
|
||||
index = paddle.arange(0, N * M, dtype="int64").reshape([N, M])
|
||||
index = index * N + paddle.arange(0, N,
|
||||
dtype="int64").unsqueeze(-1)
|
||||
index = paddle.reshape(index, [-1])
|
||||
# begin: alternative implementation for scatter
|
||||
ones = paddle.ones([N * M * N])
|
||||
zeros = paddle.zeros_like(index, dtype=ones.dtype)
|
||||
mask_p1 = paddle.scatter(ones, index, zeros)
|
||||
p = p1 * mask_p1 + (1 - mask_p1) * paddle.scatter(ones, index, p2)
|
||||
# end: alternative implementation for scatter
|
||||
# p = paddle.scatter(p1, index, p2) there is a backward bug in scatter
|
||||
|
||||
p = p * self.w + self.b
|
||||
p = p.reshape([N, M, N])
|
||||
return p
|
|
@ -165,7 +165,7 @@ class ExperimentBase(object):
|
|||
"""Reset the train loader and increment ``epoch``.
|
||||
"""
|
||||
self.epoch += 1
|
||||
if self.parallel:
|
||||
if self.parallel and isinstance(self.train_loader.batch_sampler, DistributedBatchSampler):
|
||||
self.train_loader.batch_sampler.set_epoch(self.epoch)
|
||||
self.iterator = iter(self.train_loader)
|
||||
|
||||
|
|
Loading…
Reference in New Issue