Merge branch 'master' of upstream.
This commit is contained in:
commit
55fa94f15d
|
@ -40,7 +40,7 @@ sudo apt-get install libsndfile1
|
|||
|
||||
### Install PaddlePaddle
|
||||
|
||||
See [install](https://www.paddlepaddle.org.cn/install/quick) for more details. This repo requires PaddlePaddle **1.7.1** or above.
|
||||
See [install](https://www.paddlepaddle.org.cn/install/quick) for more details. This repo requires PaddlePaddle **1.8.0** or above.
|
||||
|
||||
### Install Parakeet
|
||||
|
||||
|
|
|
@ -163,11 +163,11 @@ if __name__ == "__main__":
|
|||
anneal_interval = train_config["anneal_interval"]
|
||||
lr_scheduler = dg.ExponentialDecay(
|
||||
learning_rate, anneal_interval, anneal_rate, staircase=True)
|
||||
optim = fluid.optimizer.Adam(
|
||||
lr_scheduler, parameter_list=model.parameters())
|
||||
gradiant_max_norm = train_config["gradient_max_norm"]
|
||||
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
|
||||
gradiant_max_norm)
|
||||
optim = fluid.optimizer.Adam(
|
||||
lr_scheduler,
|
||||
parameter_list=model.parameters(),
|
||||
grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm))
|
||||
|
||||
# train
|
||||
max_iterations = train_config["max_iterations"]
|
||||
|
@ -229,7 +229,7 @@ if __name__ == "__main__":
|
|||
step_loss))
|
||||
|
||||
l.backward()
|
||||
optim.minimize(l, grad_clip=clipper)
|
||||
optim.minimize(l)
|
||||
optim.clear_gradients()
|
||||
|
||||
if global_step % eval_interval == 0:
|
||||
|
|
|
@ -196,8 +196,8 @@ if __name__ == "__main__":
|
|||
beta1,
|
||||
beta2,
|
||||
epsilon=epsilon,
|
||||
parameter_list=dv3.parameters())
|
||||
gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)
|
||||
parameter_list=dv3.parameters(),
|
||||
grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
|
||||
|
||||
# generation
|
||||
synthesis_config = config["synthesis"]
|
||||
|
@ -258,15 +258,19 @@ if __name__ == "__main__":
|
|||
text_lengths, frames)
|
||||
l = losses["loss"]
|
||||
l.backward()
|
||||
|
||||
# record learning rate before updating
|
||||
writer.add_scalar("learning_rate",
|
||||
optim._learning_rate.step().numpy(), global_step)
|
||||
optim.minimize(l, grad_clip=gradient_clipper)
|
||||
optim.minimize(l)
|
||||
optim.clear_gradients()
|
||||
|
||||
# ==================all kinds of tedious things=================
|
||||
# record step loss into tensorboard
|
||||
step_loss = {k: v.numpy()[0] for k, v in losses.items()}
|
||||
step_loss = {
|
||||
k: v.numpy()[0]
|
||||
for k, v in losses.items() if v is not None
|
||||
}
|
||||
tqdm.tqdm.write("global_step: {}\tloss: {}".format(
|
||||
global_step, step_loss["loss"]))
|
||||
for k, v in step_loss.items():
|
||||
|
|
|
@ -93,16 +93,7 @@ def synthesize(config):
|
|||
|
||||
# Build model.
|
||||
model = WaveFlow(config, checkpoint_dir)
|
||||
model.build(training=False)
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = io.load_latest_checkpoint(checkpoint_dir)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
|
||||
iteration = model.build(training=False)
|
||||
# Run model inference.
|
||||
model.infer(iteration)
|
||||
|
||||
|
|
|
@ -81,12 +81,6 @@ class WaveFlow():
|
|||
|
||||
waveflow = WaveFlowModule(config)
|
||||
|
||||
# Dry run once to create and initalize all necessary parameters.
|
||||
audio = dg.to_variable(np.random.randn(1, 16000).astype(self.dtype))
|
||||
mel = dg.to_variable(
|
||||
np.random.randn(1, config.mel_bands, 63).astype(self.dtype))
|
||||
waveflow(audio, mel)
|
||||
|
||||
if training:
|
||||
optimizer = fluid.optimizer.AdamOptimizer(
|
||||
learning_rate=config.learning_rate,
|
||||
|
|
|
@ -126,12 +126,11 @@ if __name__ == "__main__":
|
|||
anneal_interval = train_config["anneal_interval"]
|
||||
lr_scheduler = dg.ExponentialDecay(
|
||||
learning_rate, anneal_interval, anneal_rate, staircase=True)
|
||||
optim = fluid.optimizer.Adam(
|
||||
lr_scheduler, parameter_list=model.parameters())
|
||||
|
||||
gradiant_max_norm = train_config["gradient_max_norm"]
|
||||
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
|
||||
gradiant_max_norm)
|
||||
optim = fluid.optimizer.Adam(
|
||||
lr_scheduler,
|
||||
parameter_list=model.parameters(),
|
||||
grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm))
|
||||
|
||||
train_loader = fluid.io.DataLoader.from_generator(
|
||||
capacity=10, return_list=True)
|
||||
|
@ -149,7 +148,7 @@ if __name__ == "__main__":
|
|||
log_dir = os.path.join(args.output, "log")
|
||||
writer = SummaryWriter(log_dir)
|
||||
|
||||
# load parameters and optimizer, and opdate iterations done sofar
|
||||
# load parameters and optimizer, and update iterations done so far
|
||||
if args.checkpoint is not None:
|
||||
iteration = io.load_parameters(
|
||||
model, optim, checkpoint_path=args.checkpoint)
|
||||
|
@ -181,7 +180,7 @@ if __name__ == "__main__":
|
|||
writer.add_scalar("learning_rate",
|
||||
optim._learning_rate.step().numpy()[0],
|
||||
global_step)
|
||||
optim.minimize(loss_var, grad_clip=clipper)
|
||||
optim.minimize(loss_var)
|
||||
optim.clear_gradients()
|
||||
print("global_step: {}\tloss: {:<8.6f}".format(global_step,
|
||||
loss_np[0]))
|
||||
|
|
|
@ -29,22 +29,10 @@ def conv2d(input,
|
|||
data_format="NCHW"):
|
||||
padding = tuple(pad for pad_dim in padding for pad in pad_dim)
|
||||
|
||||
inputs = {
|
||||
'Input': [input],
|
||||
'Filter': [weight],
|
||||
}
|
||||
attrs = {
|
||||
'strides': stride,
|
||||
'paddings': padding,
|
||||
'dilations': dilation,
|
||||
'groups': groups,
|
||||
'use_cudnn': use_cudnn,
|
||||
'use_mkldnn': False,
|
||||
'fuse_relu_before_depthwise_conv': False,
|
||||
"padding_algorithm": "EXPLICIT",
|
||||
"data_format": data_format,
|
||||
}
|
||||
attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
|
||||
'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
|
||||
'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
|
||||
"EXPLICIT", "data_format", data_format)
|
||||
|
||||
outputs = ops.conv2d(inputs, attrs)
|
||||
out = outputs["Output"][0]
|
||||
out = ops.conv2d(input, weight, *attrs)
|
||||
return out
|
|
@ -262,7 +262,7 @@ class TTSLoss(object):
|
|||
if compute_lin_loss:
|
||||
lin_hyp = lin_hyp[:, :-self.time_shift, :]
|
||||
lin_ref = lin_ref[:, self.time_shift:, :]
|
||||
lin_mask = lin_mask[:, self.time_shift:, :]
|
||||
lin_mask = lin_mask[:, self.time_shift:]
|
||||
lin_l1_loss = self.l1_loss(
|
||||
lin_hyp, lin_ref, lin_mask, priority_bin=self.priority_bin)
|
||||
lin_bce_loss = self.binary_divergence(lin_hyp, lin_ref, lin_mask)
|
||||
|
@ -273,7 +273,7 @@ class TTSLoss(object):
|
|||
if compute_mel_loss:
|
||||
mel_hyp = mel_hyp[:, :-self.time_shift, :]
|
||||
mel_ref = mel_ref[:, self.time_shift:, :]
|
||||
mel_mask = mel_mask[:, self.time_shift:, :]
|
||||
mel_mask = mel_mask[:, self.time_shift:]
|
||||
mel_l1_loss = self.l1_loss(mel_hyp, mel_ref, mel_mask)
|
||||
mel_bce_loss = self.binary_divergence(mel_hyp, mel_ref, mel_mask)
|
||||
# print("=====>", mel_l1_loss.numpy()[0], mel_bce_loss.numpy()[0])
|
||||
|
|
|
@ -31,8 +31,10 @@ def compute_position_embedding(radians, speaker_position_rate):
|
|||
"""
|
||||
_, embed_dim = radians.shape
|
||||
batch_size = speaker_position_rate.shape[0]
|
||||
speaker_position_rate = F.unsqueeze(speaker_position_rate, [1, 2])
|
||||
scaled_radians = speaker_position_rate * radians
|
||||
scaled_radians = F.elementwise_mul(
|
||||
F.expand(F.unsqueeze(radians, [0]), [batch_size, 1, 1]),
|
||||
speaker_position_rate,
|
||||
axis=0)
|
||||
|
||||
odd_mask = (np.arange(embed_dim) % 2).astype(np.float32)
|
||||
odd_mask = dg.to_variable(odd_mask)
|
||||
|
|
|
@ -111,7 +111,7 @@ class ResidualBlock(dg.Layer):
|
|||
h = h[:, :, :time_steps]
|
||||
|
||||
# condition
|
||||
if condition:
|
||||
if condition is not None:
|
||||
h += self.condition_proj(condition)
|
||||
|
||||
# gated tanh
|
||||
|
@ -398,7 +398,8 @@ class WaveNet(dg.Layer):
|
|||
|
||||
x_std = inv_std * (t - mu)
|
||||
exponent = F.exp(-0.5 * x_std * x_std)
|
||||
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_std * exponent
|
||||
pdf_x = 1.0 / math.sqrt(2.0 * math.pi) * inv_std * exponent
|
||||
|
||||
pdf_x = p_mixture * pdf_x
|
||||
# pdf_x: [bs, len]
|
||||
pdf_x = F.reduce_sum(pdf_x, dim=-1)
|
||||
|
|
|
@ -84,12 +84,14 @@ class WeightNormWrapper(dg.Layer):
|
|||
w_v,
|
||||
self.create_parameter(
|
||||
shape=original_weight.shape, dtype=original_weight.dtype))
|
||||
with dg.no_grad():
|
||||
F.assign(original_weight, getattr(self, w_v))
|
||||
delattr(layer, param_name)
|
||||
temp = norm_except(getattr(self, w_v), self.dim, self.power)
|
||||
self.add_parameter(
|
||||
w_g, self.create_parameter(
|
||||
shape=temp.shape, dtype=temp.dtype))
|
||||
with dg.no_grad():
|
||||
F.assign(temp, getattr(self, w_g))
|
||||
|
||||
# also set this when setting up
|
||||
|
|
Loading…
Reference in New Issue