add phonetics & vocab & punctuation
This commit is contained in:
parent
c1e0aecdde
commit
580655f33f
|
@ -14,4 +14,4 @@
|
|||
|
||||
__version__ = "0.0.0"
|
||||
|
||||
from . import data, g2p, models, modules
|
||||
from parakeet import data, frontend, models, modules
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from parakeet.frontend.vocab import *
|
||||
from parakeet.frontend.phonectic import *
|
||||
from parakeet.frontend.punctuation import *
|
|
@ -0,0 +1,3 @@
|
|||
# number expansion is not that easy
|
||||
import num2words
|
||||
import inflect
|
|
@ -0,0 +1,24 @@
|
|||
def full2half_width(ustr):
|
||||
half = []
|
||||
for u in ustr:
|
||||
num = ord(u)
|
||||
if num == 0x3000: # 全角空格变半角
|
||||
num = 32
|
||||
elif 0xFF01 <= num <= 0xFF5E:
|
||||
num -= 0xfee0
|
||||
u = chr(num)
|
||||
half.append(u)
|
||||
return ''.join(half)
|
||||
|
||||
def half2full_width(ustr):
|
||||
full = []
|
||||
for u in ustr:
|
||||
num = ord(u)
|
||||
if num == 32: # 半角空格变全角
|
||||
num = 0x3000
|
||||
elif 0x21 <= num <= 0x7E:
|
||||
num += 0xfee0
|
||||
u = chr(num) # to unicode
|
||||
full.append(u)
|
||||
|
||||
return ''.join(full)
|
|
@ -0,0 +1,85 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import Union
|
||||
from g2p_en import G2p
|
||||
from g2pM import G2pM
|
||||
from parakeet.frontend import Vocab
|
||||
from opencc import OpenCC
|
||||
from parakeet.frontend.punctuation import get_punctuations
|
||||
|
||||
class Phonetics(ABC):
|
||||
@abstractmethod
|
||||
def __call__(self, sentence):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def phoneticize(self, sentence):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def numericalize(self, phonemes):
|
||||
pass
|
||||
|
||||
class English(Phonetics):
|
||||
def __init__(self):
|
||||
self.backend = G2p()
|
||||
self.phonemes = list(self.backend.phonemes)
|
||||
self.punctuations = get_punctuations("en")
|
||||
self.vocab = Vocab(self.phonemes + self.punctuations)
|
||||
|
||||
def phoneticize(self, sentence):
|
||||
return self.backend(sentence)
|
||||
|
||||
def numericalize(self, phonemes):
|
||||
ids = [self.vocab.lookup(item) for item in phonemes if item in self.vocab.stoi]
|
||||
return ids
|
||||
|
||||
def reverse(self, ids):
|
||||
return [self.vocab.reverse(i) for i in ids]
|
||||
|
||||
def __call__(self, sentence):
|
||||
return self.numericalize(self.phoneticize(sentence))
|
||||
|
||||
def vocab_size(self):
|
||||
return len(self.vocab)
|
||||
|
||||
|
||||
class Chinese(Phonetics):
|
||||
def __init__(self):
|
||||
self.opencc_backend = OpenCC('t2s.json')
|
||||
self.backend = G2pM()
|
||||
self.phonemes = self._get_all_syllables()
|
||||
self.punctuations = get_punctuations("cn")
|
||||
self.vocab = Vocab(self.phonemes + self.punctuations)
|
||||
|
||||
def _get_all_syllables(self):
|
||||
all_syllables = set([syllable for k, v in self.backend.cedict.items() for syllable in v])
|
||||
return list(all_syllables)
|
||||
|
||||
def phoneticize(self, sentence):
|
||||
simplified = self.opencc_backend.convert(sentence)
|
||||
phonemes = self.backend(simplified)
|
||||
return self._filter_symbols(phonemes)
|
||||
|
||||
def _filter_symbols(self, phonemes):
|
||||
cleaned_phonemes = []
|
||||
for item in phonemes:
|
||||
if item in self.vocab.stoi:
|
||||
cleaned_phonemes.append(item)
|
||||
else:
|
||||
for char in item:
|
||||
if char in self.vocab.stoi:
|
||||
cleaned_phonemes.append(char)
|
||||
return cleaned_phonemes
|
||||
|
||||
def numericalize(self, phonemes):
|
||||
ids = [self.vocab.lookup(item) for item in phonemes]
|
||||
return ids
|
||||
|
||||
def __call__(self, sentence):
|
||||
return self.numericalize(self.phoneticize(sentence))
|
||||
|
||||
def vocab_size(self):
|
||||
return len(self.vocab)
|
||||
|
||||
def reverse(self, ids):
|
||||
return [self.vocab.reverse(i) for i in ids]
|
|
@ -0,0 +1,33 @@
|
|||
import abc
|
||||
import string
|
||||
|
||||
__all__ = ["get_punctuations"]
|
||||
|
||||
EN_PUNCT = [
|
||||
" ",
|
||||
"-",
|
||||
"...",
|
||||
",",
|
||||
".",
|
||||
"?",
|
||||
"!",
|
||||
]
|
||||
|
||||
CN_PUNCT = [
|
||||
"、",
|
||||
",",
|
||||
";",
|
||||
":",
|
||||
"。",
|
||||
"?",
|
||||
"!"
|
||||
]
|
||||
|
||||
def get_punctuations(lang):
|
||||
if lang == "en":
|
||||
return EN_PUNCT
|
||||
elif lang == "cn":
|
||||
return CN_PUNCT
|
||||
else:
|
||||
raise ValueError(f"language {lang} Not supported")
|
||||
|
|
@ -0,0 +1,79 @@
|
|||
from typing import Dict, Iterable, List
|
||||
from ruamel import yaml
|
||||
from collections import OrderedDict
|
||||
|
||||
class Vocab(object):
|
||||
def __init__(self, symbols: Iterable[str],
|
||||
padding_symbol="<pad>",
|
||||
unk_symbol="<unk>",
|
||||
start_symbol="<s>",
|
||||
end_symbol="</s>"):
|
||||
self.special_symbols = OrderedDict()
|
||||
for i, item in enumerate(
|
||||
[padding_symbol, unk_symbol, start_symbol, end_symbol]):
|
||||
if item:
|
||||
self.special_symbols[item] = len(self.special_symbols)
|
||||
|
||||
self.padding_symbol = padding_symbol
|
||||
self.unk_symbol = unk_symbol
|
||||
self.start_symbol = start_symbol
|
||||
self.end_symbol = end_symbol
|
||||
|
||||
|
||||
self.stoi = OrderedDict()
|
||||
self.stoi.update(self.special_symbols)
|
||||
N = len(self.special_symbols)
|
||||
|
||||
for i, s in enumerate(symbols):
|
||||
if s not in self.stoi:
|
||||
self.stoi[s] = N +i
|
||||
self.itos = {v: k for k, v in self.stoi.items()}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.stoi)
|
||||
|
||||
@property
|
||||
def num_specials(self):
|
||||
return len(self.special_symbols)
|
||||
|
||||
# special tokens
|
||||
@property
|
||||
def padding_index(self):
|
||||
return self.stoi.get(self.padding_symbol, -1)
|
||||
|
||||
@property
|
||||
def unk_index(self):
|
||||
return self.stoi.get(self.unk_symbol, -1)
|
||||
|
||||
@property
|
||||
def start_index(self):
|
||||
return self.stoi.get(self.start_symbol, -1)
|
||||
|
||||
@property
|
||||
def end_index(self):
|
||||
return self.stoi.get(self.end_symbol, -1)
|
||||
|
||||
def __repr__(self):
|
||||
fmt = "Vocab(size: {},\nstoi:\n{})"
|
||||
return fmt.format(len(self), self.stoi)
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
|
||||
def lookup(self, symbol):
|
||||
return self.stoi[symbol]
|
||||
|
||||
def reverse(self, index):
|
||||
return self.itos[index]
|
||||
|
||||
def add_symbol(self, symbol):
|
||||
if symbol in self.stoi:
|
||||
return
|
||||
N = len(self.stoi)
|
||||
self.stoi[symbol] = N
|
||||
self.itos[N] = symbol
|
||||
|
||||
def add_symbols(self, symbols):
|
||||
for symbol in symbols:
|
||||
self.add_symbol(symbol)
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
# coding: utf-8
|
||||
"""Text processing frontend
|
||||
|
||||
All frontend module should have the following functions:
|
||||
|
||||
- text_to_sequence(text, p)
|
||||
- sequence_to_text(sequence)
|
||||
|
||||
and the property:
|
||||
|
||||
- n_vocab
|
||||
|
||||
"""
|
||||
from . import en
|
||||
|
||||
# optinoal Japanese frontend
|
||||
try:
|
||||
from . import jp
|
||||
except ImportError:
|
||||
jp = None
|
||||
|
||||
try:
|
||||
from . import ko
|
||||
except ImportError:
|
||||
ko = None
|
||||
|
||||
# if you are going to use the frontend, you need to modify _characters in symbol.py:
|
||||
# _characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? ' + '¡¿ñáéíóúÁÉÍÓÚÑ'
|
||||
try:
|
||||
from . import es
|
||||
except ImportError:
|
||||
es = None
|
|
@ -1,34 +0,0 @@
|
|||
# coding: utf-8
|
||||
|
||||
from ..text.symbols import symbols
|
||||
from ..text import sequence_to_text
|
||||
|
||||
import nltk
|
||||
from random import random
|
||||
|
||||
n_vocab = len(symbols)
|
||||
|
||||
_arpabet = nltk.corpus.cmudict.dict()
|
||||
|
||||
|
||||
def _maybe_get_arpabet(word, p):
|
||||
try:
|
||||
phonemes = _arpabet[word][0]
|
||||
phonemes = " ".join(phonemes)
|
||||
except KeyError:
|
||||
return word
|
||||
|
||||
return '{%s}' % phonemes if random() < p else word
|
||||
|
||||
|
||||
def mix_pronunciation(text, p):
|
||||
text = ' '.join(_maybe_get_arpabet(word, p) for word in text.split(' '))
|
||||
return text
|
||||
|
||||
|
||||
def text_to_sequence(text, p=0.0):
|
||||
if p >= 0:
|
||||
text = mix_pronunciation(text, p)
|
||||
from ..text import text_to_sequence
|
||||
text = text_to_sequence(text, ["english_cleaners"])
|
||||
return text
|
|
@ -1,14 +0,0 @@
|
|||
# coding: utf-8
|
||||
from ..text.symbols import symbols
|
||||
from ..text import sequence_to_text
|
||||
|
||||
import nltk
|
||||
from random import random
|
||||
|
||||
n_vocab = len(symbols)
|
||||
|
||||
|
||||
def text_to_sequence(text, p=0.0):
|
||||
from ..text import text_to_sequence
|
||||
text = text_to_sequence(text, ["basic_cleaners"])
|
||||
return text
|
|
@ -1,77 +0,0 @@
|
|||
# coding: utf-8
|
||||
|
||||
import MeCab
|
||||
import jaconv
|
||||
from random import random
|
||||
|
||||
n_vocab = 0xffff
|
||||
|
||||
_eos = 1
|
||||
_pad = 0
|
||||
_tagger = None
|
||||
|
||||
|
||||
def _yomi(mecab_result):
|
||||
tokens = []
|
||||
yomis = []
|
||||
for line in mecab_result.split("\n")[:-1]:
|
||||
s = line.split("\t")
|
||||
if len(s) == 1:
|
||||
break
|
||||
token, rest = s
|
||||
rest = rest.split(",")
|
||||
tokens.append(token)
|
||||
yomi = rest[7] if len(rest) > 7 else None
|
||||
yomi = None if yomi == "*" else yomi
|
||||
yomis.append(yomi)
|
||||
|
||||
return tokens, yomis
|
||||
|
||||
|
||||
def _mix_pronunciation(tokens, yomis, p):
|
||||
return "".join(yomis[idx]
|
||||
if yomis[idx] is not None and random() < p else tokens[idx]
|
||||
for idx in range(len(tokens)))
|
||||
|
||||
|
||||
def mix_pronunciation(text, p):
|
||||
global _tagger
|
||||
if _tagger is None:
|
||||
_tagger = MeCab.Tagger("")
|
||||
tokens, yomis = _yomi(_tagger.parse(text))
|
||||
return _mix_pronunciation(tokens, yomis, p)
|
||||
|
||||
|
||||
def add_punctuation(text):
|
||||
last = text[-1]
|
||||
if last not in [".", ",", "、", "。", "!", "?", "!", "?"]:
|
||||
text = text + "。"
|
||||
return text
|
||||
|
||||
|
||||
def normalize_delimitor(text):
|
||||
text = text.replace(",", "、")
|
||||
text = text.replace(".", "。")
|
||||
text = text.replace(",", "、")
|
||||
text = text.replace(".", "。")
|
||||
return text
|
||||
|
||||
|
||||
def text_to_sequence(text, p=0.0):
|
||||
for c in [" ", " ", "「", "」", "『", "』", "・", "【", "】", "(", ")", "(", ")"]:
|
||||
text = text.replace(c, "")
|
||||
text = text.replace("!", "!")
|
||||
text = text.replace("?", "?")
|
||||
|
||||
text = normalize_delimitor(text)
|
||||
text = jaconv.normalize(text)
|
||||
if p > 0:
|
||||
text = mix_pronunciation(text, p)
|
||||
text = jaconv.hira2kata(text)
|
||||
text = add_punctuation(text)
|
||||
|
||||
return [ord(c) for c in text] + [_eos] # EOS
|
||||
|
||||
|
||||
def sequence_to_text(seq):
|
||||
return "".join(chr(n) for n in seq)
|
|
@ -1,17 +0,0 @@
|
|||
# coding: utf-8
|
||||
|
||||
from random import random
|
||||
|
||||
n_vocab = 0xffff
|
||||
|
||||
_eos = 1
|
||||
_pad = 0
|
||||
_tagger = None
|
||||
|
||||
|
||||
def text_to_sequence(text, p=0.0):
|
||||
return [ord(c) for c in text] + [_eos] # EOS
|
||||
|
||||
|
||||
def sequence_to_text(seq):
|
||||
return "".join(chr(n) for n in seq)
|
|
@ -1,89 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
from . import cleaners
|
||||
from .symbols import symbols
|
||||
|
||||
# Mappings from symbol to numeric ID and vice versa:
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
||||
|
||||
# Regular expression matching text enclosed in curly braces:
|
||||
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||
|
||||
|
||||
def text_to_sequence(text, cleaner_names):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
|
||||
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
|
||||
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
|
||||
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
cleaner_names: names of the cleaner functions to run the text through
|
||||
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
sequence = []
|
||||
|
||||
# Check for curly braces and treat their contents as ARPAbet:
|
||||
while len(text):
|
||||
m = _curly_re.match(text)
|
||||
if not m:
|
||||
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
|
||||
break
|
||||
sequence += _symbols_to_sequence(
|
||||
_clean_text(m.group(1), cleaner_names))
|
||||
sequence += _arpabet_to_sequence(m.group(2))
|
||||
text = m.group(3)
|
||||
|
||||
# Append EOS token
|
||||
sequence.append(_symbol_to_id['~'])
|
||||
return sequence
|
||||
|
||||
|
||||
def sequence_to_text(sequence):
|
||||
'''Converts a sequence of IDs back to a string'''
|
||||
result = ''
|
||||
for symbol_id in sequence:
|
||||
if symbol_id in _id_to_symbol:
|
||||
s = _id_to_symbol[symbol_id]
|
||||
# Enclose ARPAbet back in curly braces:
|
||||
if len(s) > 1 and s[0] == '@':
|
||||
s = '{%s}' % s[1:]
|
||||
result += s
|
||||
return result.replace('}{', ' ')
|
||||
|
||||
|
||||
def _clean_text(text, cleaner_names):
|
||||
for name in cleaner_names:
|
||||
cleaner = getattr(cleaners, name)
|
||||
if not cleaner:
|
||||
raise Exception('Unknown cleaner: %s' % name)
|
||||
text = cleaner(text)
|
||||
return text
|
||||
|
||||
|
||||
def _symbols_to_sequence(symbols):
|
||||
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
|
||||
|
||||
|
||||
def _arpabet_to_sequence(text):
|
||||
return _symbols_to_sequence(['@' + s for s in text.split()])
|
||||
|
||||
|
||||
def _should_keep_symbol(s):
|
||||
return s in _symbol_to_id and s is not '_' and s is not '~'
|
|
@ -1,110 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
'''
|
||||
Cleaners are transformations that run over the input text at both training and eval time.
|
||||
|
||||
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||
1. "english_cleaners" for English text
|
||||
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||
the symbols in symbols.py to match your data).
|
||||
'''
|
||||
|
||||
import re
|
||||
from unidecode import unidecode
|
||||
from .numbers import normalize_numbers
|
||||
|
||||
# Regular expression matching whitespace:
|
||||
_whitespace_re = re.compile(r'\s+')
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
('mrs', 'misess'),
|
||||
('mr', 'mister'),
|
||||
('dr', 'doctor'),
|
||||
('st', 'saint'),
|
||||
('co', 'company'),
|
||||
('jr', 'junior'),
|
||||
('maj', 'major'),
|
||||
('gen', 'general'),
|
||||
('drs', 'doctors'),
|
||||
('rev', 'reverend'),
|
||||
('lt', 'lieutenant'),
|
||||
('hon', 'honorable'),
|
||||
('sgt', 'sergeant'),
|
||||
('capt', 'captain'),
|
||||
('esq', 'esquire'),
|
||||
('ltd', 'limited'),
|
||||
('col', 'colonel'),
|
||||
('ft', 'fort'),
|
||||
]]
|
||||
|
||||
|
||||
def expand_abbreviations(text):
|
||||
for regex, replacement in _abbreviations:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def expand_numbers(text):
|
||||
return normalize_numbers(text)
|
||||
|
||||
|
||||
def lowercase(text):
|
||||
return text.lower()
|
||||
|
||||
|
||||
def collapse_whitespace(text):
|
||||
return re.sub(_whitespace_re, ' ', text)
|
||||
|
||||
|
||||
def convert_to_ascii(text):
|
||||
return unidecode(text)
|
||||
|
||||
|
||||
def add_punctuation(text):
|
||||
if len(text) == 0:
|
||||
return text
|
||||
if text[-1] not in '!,.:;?':
|
||||
text = text + '.' # without this decoder is confused when to output EOS
|
||||
return text
|
||||
|
||||
|
||||
def basic_cleaners(text):
|
||||
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
||||
text = lowercase(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def transliteration_cleaners(text):
|
||||
'''Pipeline for non-English text that transliterates to ASCII.'''
|
||||
text = convert_to_ascii(text)
|
||||
text = lowercase(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
||||
|
||||
|
||||
def english_cleaners(text):
|
||||
'''Pipeline for English text, including number and abbreviation expansion.'''
|
||||
text = convert_to_ascii(text)
|
||||
#text = add_punctuation(text)
|
||||
text = lowercase(text)
|
||||
text = expand_numbers(text)
|
||||
text = expand_abbreviations(text)
|
||||
text = collapse_whitespace(text)
|
||||
return text
|
|
@ -1,78 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
|
||||
valid_symbols = [
|
||||
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1',
|
||||
'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0',
|
||||
'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0',
|
||||
'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0',
|
||||
'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG',
|
||||
'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH',
|
||||
'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W',
|
||||
'Y', 'Z', 'ZH'
|
||||
]
|
||||
|
||||
_valid_symbol_set = set(valid_symbols)
|
||||
|
||||
|
||||
class CMUDict:
|
||||
'''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
|
||||
|
||||
def __init__(self, file_or_path, keep_ambiguous=True):
|
||||
if isinstance(file_or_path, str):
|
||||
with open(file_or_path, encoding='latin-1') as f:
|
||||
entries = _parse_cmudict(f)
|
||||
else:
|
||||
entries = _parse_cmudict(file_or_path)
|
||||
if not keep_ambiguous:
|
||||
entries = {
|
||||
word: pron
|
||||
for word, pron in entries.items() if len(pron) == 1
|
||||
}
|
||||
self._entries = entries
|
||||
|
||||
def __len__(self):
|
||||
return len(self._entries)
|
||||
|
||||
def lookup(self, word):
|
||||
'''Returns list of ARPAbet pronunciations of the given word.'''
|
||||
return self._entries.get(word.upper())
|
||||
|
||||
|
||||
_alt_re = re.compile(r'\([0-9]+\)')
|
||||
|
||||
|
||||
def _parse_cmudict(file):
|
||||
cmudict = {}
|
||||
for line in file:
|
||||
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||
parts = line.split(' ')
|
||||
word = re.sub(_alt_re, '', parts[0])
|
||||
pronunciation = _get_pronunciation(parts[1])
|
||||
if pronunciation:
|
||||
if word in cmudict:
|
||||
cmudict[word].append(pronunciation)
|
||||
else:
|
||||
cmudict[word] = [pronunciation]
|
||||
return cmudict
|
||||
|
||||
|
||||
def _get_pronunciation(s):
|
||||
parts = s.strip().split(' ')
|
||||
for part in parts:
|
||||
if part not in _valid_symbol_set:
|
||||
return None
|
||||
return ' '.join(parts)
|
|
@ -1,71 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import inflect
|
||||
import re
|
||||
|
||||
_inflect = inflect.engine()
|
||||
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
||||
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
||||
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
||||
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
||||
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
||||
_number_re = re.compile(r'[0-9]+')
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
return m.group(1).replace(',', '')
|
||||
|
||||
|
||||
def _expand_decimal_point(m):
|
||||
return m.group(1).replace('.', ' point ')
|
||||
|
||||
|
||||
def _expand_dollars(m):
|
||||
match = m.group(1)
|
||||
parts = match.split('.')
|
||||
if len(parts) > 2:
|
||||
return match + ' dollars' # Unexpected format
|
||||
dollars = int(parts[0]) if parts[0] else 0
|
||||
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||
if dollars and cents:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
return '%s %s' % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s' % (cents, cent_unit)
|
||||
else:
|
||||
return 'zero dollars'
|
||||
|
||||
|
||||
def _expand_ordinal(m):
|
||||
return _inflect.number_to_words(m.group(0))
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
num = int(m.group(0))
|
||||
if num > 1000 and num < 3000:
|
||||
if num == 2000:
|
||||
return 'two thousand'
|
||||
elif num > 2000 and num < 2010:
|
||||
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
||||
elif num % 100 == 0:
|
||||
return _inflect.number_to_words(num // 100) + ' hundred'
|
||||
else:
|
||||
return _inflect.number_to_words(
|
||||
num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword='')
|
||||
|
||||
|
||||
def normalize_numbers(text):
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
text = re.sub(_pounds_re, r'\1 pounds', text)
|
||||
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||
text = re.sub(_number_re, _expand_number, text)
|
||||
return text
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
'''
|
||||
Defines the set of symbols used in text input to the model.
|
||||
|
||||
The default is a set of ASCII characters that works well for English or text that has been run
|
||||
through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details.
|
||||
'''
|
||||
from .cmudict import valid_symbols
|
||||
|
||||
_pad = '_'
|
||||
_eos = '~'
|
||||
_characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? '
|
||||
|
||||
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
|
||||
_arpabet = ['@' + s for s in valid_symbols]
|
||||
|
||||
# Export all symbols:
|
||||
symbols = [_pad, _eos] + list(_characters) + _arpabet
|
Loading…
Reference in New Issue