place parakeet into Parakeet/parakeet, and add tests
This commit is contained in:
parent
5ac19fa57f
commit
617605c8fe
|
@ -0,0 +1,129 @@
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
|
@ -1,2 +0,0 @@
|
||||||
*.pyc
|
|
||||||
*.tar.*
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"python.pythonPath": "/Users/chenfeiyu/miniconda3/envs/paddle/bin/python"
|
||||||
|
}
|
|
@ -3,7 +3,17 @@ functions to make batch for arrays which satisfy some conditions.
|
||||||
"""
|
"""
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
def text_collate(minibatch):
|
class TextIDBatcher(object):
|
||||||
|
"""A wrapper class for a function to build a functor, which holds the configs to pass to the function."""
|
||||||
|
def __init__(self, pad_id=0, dtype=np.int64):
|
||||||
|
self.pad_id = pad_id
|
||||||
|
self.dtype = dtype
|
||||||
|
|
||||||
|
def __call__(self, minibatch):
|
||||||
|
out = batch_text_id(minibatch, pad_id=self.pad_id, dtype=self.dtype)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def batch_text_id(minibatch, pad_id=0, dtype=np.int64):
|
||||||
"""
|
"""
|
||||||
minibatch: List[Example]
|
minibatch: List[Example]
|
||||||
Example: ndarray, shape(T,), dtype: int64
|
Example: ndarray, shape(T,), dtype: int64
|
||||||
|
@ -17,15 +27,25 @@ def text_collate(minibatch):
|
||||||
batch = []
|
batch = []
|
||||||
for example in minibatch:
|
for example in minibatch:
|
||||||
pad_len = max_len - example.shape[0]
|
pad_len = max_len - example.shape[0]
|
||||||
batch.append(np.pad(example, [(0, pad_len)], mode='constant', constant_values=0))
|
batch.append(np.pad(example, [(0, pad_len)], mode='constant', constant_values=pad_id))
|
||||||
|
|
||||||
return np.array(batch, dtype=np.int64)
|
return np.array(batch, dtype=dtype)
|
||||||
|
|
||||||
def wav_collate(minibatch):
|
class WavBatcher(object):
|
||||||
|
def __init__(self, pad_value=0., dtype=np.float32):
|
||||||
|
self.pad_value = pad_value
|
||||||
|
self.dtype = dtype
|
||||||
|
|
||||||
|
def __call__(self, minibatch):
|
||||||
|
out = batch_wav(minibatch, pad_value=self.pad_value, dtype=self.dtype)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def batch_wav(minibatch, pad_value=0., dtype=np.float32):
|
||||||
"""
|
"""
|
||||||
minibatch: List[Example]
|
minibatch: List[Example]
|
||||||
Example: ndarray, shape(C, T) for multi-channel wav, shape(T,) for mono-channel wav, dtype: float32
|
Example: ndarray, shape(C, T) for multi-channel wav, shape(T,) for mono-channel wav, dtype: float32
|
||||||
"""
|
"""
|
||||||
|
# detect data format, maybe better to specify it in __init__
|
||||||
peek_example = minibatch[0]
|
peek_example = minibatch[0]
|
||||||
if len(peek_example.shape) == 1:
|
if len(peek_example.shape) == 1:
|
||||||
mono_channel = True
|
mono_channel = True
|
||||||
|
@ -39,13 +59,23 @@ def wav_collate(minibatch):
|
||||||
for example in minibatch:
|
for example in minibatch:
|
||||||
pad_len = max_len - example.shape[-1]
|
pad_len = max_len - example.shape[-1]
|
||||||
if mono_channel:
|
if mono_channel:
|
||||||
batch.append(np.pad(example, [(0, pad_len)], mode='constant', constant_values=0.))
|
batch.append(np.pad(example, [(0, pad_len)], mode='constant', constant_values=pad_value))
|
||||||
else:
|
else:
|
||||||
batch.append(np.pad(example, [(0, 0), (0, pad_len)], mode='constant', constant_values=0.)) # what about PCM, no
|
batch.append(np.pad(example, [(0, 0), (0, pad_len)], mode='constant', constant_values=pad_value)) # what about PCM, no
|
||||||
|
|
||||||
return np.array(batch, dtype=np.float32)
|
return np.array(batch, dtype=dtype)
|
||||||
|
|
||||||
def spec_collate(minibatch):
|
|
||||||
|
class SpecBatcher(object):
|
||||||
|
def __init__(self, pad_value=0., dtype=np.float32):
|
||||||
|
self.pad_value = pad_value
|
||||||
|
self.dtype = dtype
|
||||||
|
|
||||||
|
def __call__(self, minibatch):
|
||||||
|
out = batch_spec(minibatch, pad_value=self.pad_value, dtype=self.dtype)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def batch_spec(minibatch, pad_value=0., dtype=np.float32):
|
||||||
"""
|
"""
|
||||||
minibatch: List[Example]
|
minibatch: List[Example]
|
||||||
Example: ndarray, shape(C, F, T) for multi-channel spectrogram, shape(F, T) for mono-channel spectrogram, dtype: float32
|
Example: ndarray, shape(C, F, T) for multi-channel spectrogram, shape(F, T) for mono-channel spectrogram, dtype: float32
|
||||||
|
@ -64,8 +94,8 @@ def spec_collate(minibatch):
|
||||||
for example in minibatch:
|
for example in minibatch:
|
||||||
pad_len = max_len - example.shape[-1]
|
pad_len = max_len - example.shape[-1]
|
||||||
if mono_channel:
|
if mono_channel:
|
||||||
batch.append(np.pad(example, [(0, 0), (0, pad_len)], mode='constant', constant_values=0.))
|
batch.append(np.pad(example, [(0, 0), (0, pad_len)], mode='constant', constant_values=pad_value))
|
||||||
else:
|
else:
|
||||||
batch.append(np.pad(example, [(0, 0), (0, 0), (0, pad_len)], mode='constant', constant_values=0.)) # what about PCM, no
|
batch.append(np.pad(example, [(0, 0), (0, 0), (0, pad_len)], mode='constant', constant_values=pad_value)) # what about PCM, no
|
||||||
|
|
||||||
return np.array(batch, dtype=np.float32)
|
return np.array(batch, dtype=dtype)
|
|
@ -1,10 +1,9 @@
|
||||||
from sampler import SequentialSampler, RandomSampler, BatchSampler
|
from .sampler import SequentialSampler, RandomSampler, BatchSampler
|
||||||
|
|
||||||
class DataLoader(object):
|
class DataCargo(object):
|
||||||
def __init__(self, dataset, batch_size=1, collate_fn = lambda x: x,
|
def __init__(self, dataset, batch_size=1, sampler=None,
|
||||||
sampler=None, shuffle=False, batch_sampler=None, drop_last=False):
|
shuffle=False, batch_sampler=None, drop_last=False):
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
self.collate_fn = collate_fn
|
|
||||||
|
|
||||||
if batch_sampler is not None:
|
if batch_sampler is not None:
|
||||||
# auto_collation with custom batch_sampler
|
# auto_collation with custom batch_sampler
|
||||||
|
@ -14,20 +13,14 @@ class DataLoader(object):
|
||||||
'drop_last')
|
'drop_last')
|
||||||
batch_size = None
|
batch_size = None
|
||||||
drop_last = False
|
drop_last = False
|
||||||
|
shuffle = False
|
||||||
elif batch_size is None:
|
elif batch_size is None:
|
||||||
# no auto_collation
|
raise ValueError('batch sampler is none. then batch size must not be none.')
|
||||||
if shuffle or drop_last:
|
elif sampler is None:
|
||||||
raise ValueError('batch_size=None option disables auto-batching '
|
|
||||||
'and is mutually exclusive with '
|
|
||||||
'shuffle, and drop_last')
|
|
||||||
|
|
||||||
if sampler is None: # give default samplers
|
|
||||||
if shuffle:
|
if shuffle:
|
||||||
sampler = RandomSampler(dataset)
|
sampler = RandomSampler(dataset)
|
||||||
else:
|
else:
|
||||||
sampler = SequentialSampler(dataset)
|
sampler = SequentialSampler(dataset)
|
||||||
|
|
||||||
if batch_size is not None and batch_sampler is None:
|
|
||||||
# auto_collation without custom batch_sampler
|
# auto_collation without custom batch_sampler
|
||||||
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
||||||
|
|
||||||
|
@ -73,7 +66,7 @@ class DataIterator(object):
|
||||||
def __next__(self):
|
def __next__(self):
|
||||||
index = self._next_index() # may raise StopIteration, TODO(chenfeiyu): use dynamic batch size
|
index = self._next_index() # may raise StopIteration, TODO(chenfeiyu): use dynamic batch size
|
||||||
minibatch = [self._dataset[i] for i in index] # we can abstract it, too to use dynamic batch size
|
minibatch = [self._dataset[i] for i in index] # we can abstract it, too to use dynamic batch size
|
||||||
minibatch = self.loader.collate_fn(minibatch) # list[Example] -> Batch
|
minibatch = self._dataset._batch_examples(minibatch) # list[Example] -> Batch
|
||||||
return minibatch
|
return minibatch
|
||||||
|
|
||||||
def _next_index(self):
|
def _next_index(self):
|
|
@ -1,16 +1,16 @@
|
||||||
class Dataset(object):
|
class Dataset(object):
|
||||||
def __init__(self, lazy=True, stream=False):
|
def __init__(self):
|
||||||
# note that lazy and stream means two different things in our glossary
|
pass
|
||||||
# lazy means to place preprocessing in __getitem__
|
|
||||||
# stram means the data source is itself a stream
|
|
||||||
self.lazy = lazy
|
|
||||||
self.stream = stream
|
|
||||||
|
|
||||||
def _load_metadata(self):
|
def _load_metadata(self):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def _get_example(self):
|
def _get_example(self):
|
||||||
"""return a Record"""
|
"""return a Record (or Example, Instance according to your glossary)"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def _batch_examples(self, minibatch):
|
||||||
|
"""get a list of examples, return a batch, whose structure is the same as an example"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def _prepare_metadata(self):
|
def _prepare_metadata(self):
|
|
@ -2,23 +2,19 @@ from pathlib import Path
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import librosa
|
import librosa
|
||||||
import g2p
|
from .. import g2p
|
||||||
|
|
||||||
from sampler import SequentialSampler, RandomSampler, BatchSampler
|
from .sampler import SequentialSampler, RandomSampler, BatchSampler
|
||||||
from dataset import Dataset
|
from .dataset import Dataset
|
||||||
from dataloader import DataLoader
|
from .datacargo import DataCargo
|
||||||
|
from .batch import TextIDBatcher, SpecBatcher
|
||||||
|
|
||||||
from collate import text_collate, spec_collate
|
|
||||||
|
|
||||||
LJSPEECH_ROOT = Path("/Users/chenfeiyu/projects/LJSpeech-1.1")
|
|
||||||
class LJSpeech(Dataset):
|
class LJSpeech(Dataset):
|
||||||
def __init__(self, root=LJSPEECH_ROOT, lazy=True, stream=False):
|
def __init__(self, root):
|
||||||
super(LJSpeech, self).__init__(lazy, stream)
|
super(LJSpeech, self).__init__()
|
||||||
self.root = root
|
self.root = root
|
||||||
self.metadata = self._prepare_metadata() # we can do this just for luck
|
self.metadata = self._prepare_metadata() # we can do this just for luck
|
||||||
|
|
||||||
if self.stream:
|
|
||||||
self.examples_generator = self._read()
|
|
||||||
|
|
||||||
def _prepare_metadata(self):
|
def _prepare_metadata(self):
|
||||||
# if pure-stream case, each _prepare_metadata returns a generator
|
# if pure-stream case, each _prepare_metadata returns a generator
|
||||||
|
@ -26,11 +22,6 @@ class LJSpeech(Dataset):
|
||||||
metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
|
metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
|
||||||
names=["fname", "raw_text", "normalized_text"])
|
names=["fname", "raw_text", "normalized_text"])
|
||||||
return metadata
|
return metadata
|
||||||
|
|
||||||
def _read(self):
|
|
||||||
for _, metadatum in self.metadata.iterrows():
|
|
||||||
example = self._get_example(metadatum)
|
|
||||||
yield example
|
|
||||||
|
|
||||||
def _get_example(self, metadatum):
|
def _get_example(self, metadatum):
|
||||||
"""All the code for generating an Example from a metadatum. If you want a
|
"""All the code for generating an Example from a metadatum. If you want a
|
||||||
|
@ -62,44 +53,30 @@ class LJSpeech(Dataset):
|
||||||
phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
|
phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
|
||||||
return (mag, mel, phonemes) # maybe we need to implement it as a map in the future
|
return (mag, mel, phonemes) # maybe we need to implement it as a map in the future
|
||||||
|
|
||||||
|
def _batch_examples(self, minibatch):
|
||||||
|
mag_batch = []
|
||||||
|
mel_batch = []
|
||||||
|
phoneme_batch = []
|
||||||
|
for example in minibatch:
|
||||||
|
mag, mel, phoneme = example
|
||||||
|
mag_batch.append(mag)
|
||||||
|
mel_batch.append(mel)
|
||||||
|
phoneme_batch.append(phoneme)
|
||||||
|
mag_batch = SpecBatcher(pad_value=0.)(mag_batch)
|
||||||
|
mel_batch = SpecBatcher(pad_value=0.)(mel_batch)
|
||||||
|
phoneme_batch = TextIDBatcher(pad_id=0)(phoneme_batch)
|
||||||
|
return (mag_batch, mel_batch, phoneme_batch)
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
if self.stream:
|
|
||||||
raise ValueError("__getitem__ is invalid in stream mode")
|
|
||||||
metadatum = self.metadata.iloc[index]
|
metadatum = self.metadata.iloc[index]
|
||||||
example = self._get_example(metadatum)
|
example = self._get_example(metadatum)
|
||||||
return example
|
return example
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
if self.stream:
|
for i in range(len(self)):
|
||||||
for example in self.examples_generator:
|
yield self[i]
|
||||||
yield example
|
|
||||||
else:
|
|
||||||
for i in range(len(self)):
|
|
||||||
yield self[i]
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
if self.stream:
|
|
||||||
raise ValueError("__len__ is invalid in stream mode")
|
|
||||||
return len(self.metadata)
|
return len(self.metadata)
|
||||||
|
|
||||||
|
|
||||||
def fn(minibatch):
|
|
||||||
mag_batch = []
|
|
||||||
mel_batch = []
|
|
||||||
phoneme_batch = []
|
|
||||||
for example in minibatch:
|
|
||||||
mag, mel, phoneme = example
|
|
||||||
mag_batch.append(mag)
|
|
||||||
mel_batch.append(mel)
|
|
||||||
phoneme_batch.append(phoneme)
|
|
||||||
mag_batch = spec_collate(mag_batch)
|
|
||||||
mel_batch = spec_collate(mel_batch)
|
|
||||||
phoneme_batch = text_collate(phoneme_batch)
|
|
||||||
return (mag_batch, mel_batch, phoneme_batch)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
ljspeech = LJSpeech(LJSPEECH_ROOT)
|
|
||||||
ljspeech_loader = DataLoader(ljspeech, batch_size=16, shuffle=True, collate_fn=fn)
|
|
||||||
for i, batch in enumerate(ljspeech_loader):
|
|
||||||
print(i)
|
|
||||||
|
|
Before Width: | Height: | Size: 447 KiB After Width: | Height: | Size: 447 KiB |
|
@ -12,22 +12,22 @@ and the property:
|
||||||
- n_vocab
|
- n_vocab
|
||||||
|
|
||||||
"""
|
"""
|
||||||
from g2p import en
|
from . import en
|
||||||
|
|
||||||
# optinoal Japanese frontend
|
# optinoal Japanese frontend
|
||||||
try:
|
try:
|
||||||
from g2p import jp
|
from . import jp
|
||||||
except ImportError:
|
except ImportError:
|
||||||
jp = None
|
jp = None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from g2p import ko
|
from . import ko
|
||||||
except ImportError:
|
except ImportError:
|
||||||
ko = None
|
ko = None
|
||||||
|
|
||||||
# if you are going to use the frontend, you need to modify _characters in symbol.py:
|
# if you are going to use the frontend, you need to modify _characters in symbol.py:
|
||||||
# _characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? ' + '¡¿ñáéíóúÁÉÍÓÚÑ'
|
# _characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? ' + '¡¿ñáéíóúÁÉÍÓÚÑ'
|
||||||
try:
|
try:
|
||||||
from g2p import es
|
from . import es
|
||||||
except ImportError:
|
except ImportError:
|
||||||
es = None
|
es = None
|
|
@ -1,8 +1,7 @@
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
|
|
||||||
from g2p.text.symbols import symbols
|
from ..text.symbols import symbols
|
||||||
from g2p import text
|
from ..text import sequence_to_text
|
||||||
from g2p.text import sequence_to_text
|
|
||||||
|
|
||||||
import nltk
|
import nltk
|
||||||
from random import random
|
from random import random
|
||||||
|
@ -30,7 +29,7 @@ def mix_pronunciation(text, p):
|
||||||
def text_to_sequence(text, p=0.0):
|
def text_to_sequence(text, p=0.0):
|
||||||
if p >= 0:
|
if p >= 0:
|
||||||
text = mix_pronunciation(text, p)
|
text = mix_pronunciation(text, p)
|
||||||
from g2p.text import text_to_sequence
|
from ..text import text_to_sequence
|
||||||
text = text_to_sequence(text, ["english_cleaners"])
|
text = text_to_sequence(text, ["english_cleaners"])
|
||||||
return text
|
return text
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
from g2p.text.symbols import symbols
|
from ..text.symbols import symbols
|
||||||
from g2p.text import sequence_to_text
|
from ..text import sequence_to_text
|
||||||
|
|
||||||
import nltk
|
import nltk
|
||||||
from random import random
|
from random import random
|
||||||
|
@ -9,7 +9,7 @@ n_vocab = len(symbols)
|
||||||
|
|
||||||
|
|
||||||
def text_to_sequence(text, p=0.0):
|
def text_to_sequence(text, p=0.0):
|
||||||
from g2p.text import text_to_sequence
|
from ..text import text_to_sequence
|
||||||
text = text_to_sequence(text, ["basic_cleaners"])
|
text = text_to_sequence(text, ["basic_cleaners"])
|
||||||
return text
|
return text
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
import re
|
import re
|
||||||
from g2p.text import cleaners
|
from . import cleaners
|
||||||
from g2p.text.symbols import symbols
|
from .symbols import symbols
|
||||||
|
|
||||||
|
|
||||||
# Mappings from symbol to numeric ID and vice versa:
|
# Mappings from symbol to numeric ID and vice versa:
|
|
@ -0,0 +1,10 @@
|
||||||
|
from parakeet.data.ljspeech import LJSpeech
|
||||||
|
from parakeet.data.datacargo import DataCargo
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
LJSPEECH_ROOT = Path("/Users/chenfeiyu/projects/LJSpeech-1.1")
|
||||||
|
ljspeech = LJSpeech(LJSPEECH_ROOT)
|
||||||
|
ljspeech_cargo = DataCargo(ljspeech, batch_size=16, shuffle=True)
|
||||||
|
for i, batch in enumerate(ljspeech_cargo):
|
||||||
|
print(i)
|
Loading…
Reference in New Issue