Adapt the change in save & load
This commit is contained in:
parent
fccbf6d797
commit
618eb31ab4
|
@ -13,8 +13,8 @@ PaddlePaddle dynamic graph implementation of [WaveFlow: A Compact Flow-based Mod
|
|||
├── synthesis.py # script for speech synthesis
|
||||
├── train.py # script for model training
|
||||
├── utils.py # helper functions for e.g., model checkpointing
|
||||
├── parakeet/models/waveflow/data.py # dataset and dataloader settings for LJSpeech
|
||||
├── parakeet/models/waveflow/waveflow.py # WaveFlow model high level APIs
|
||||
├── data.py # dataset and dataloader settings for LJSpeech
|
||||
├── waveflow.py # WaveFlow model high level APIs
|
||||
└── parakeet/models/waveflow/waveflow_modules.py # WaveFlow model implementation
|
||||
```
|
||||
|
||||
|
@ -48,12 +48,12 @@ python -u train.py \
|
|||
--config=./configs/waveflow_ljspeech.yaml \
|
||||
--root=./data/LJSpeech-1.1 \
|
||||
--name=${ModelName} --batch_size=4 \
|
||||
--parallel=false --use_gpu=true
|
||||
--use_gpu=true
|
||||
```
|
||||
|
||||
#### Save and Load checkpoints
|
||||
|
||||
Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default.
|
||||
Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default, where `${ModelName}` is the model name for one single experiment and it could be whatever you like.
|
||||
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
|
||||
|
||||
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
|
||||
|
@ -68,7 +68,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
|
|||
python -u -m paddle.distributed.launch train.py \
|
||||
--config=./configs/waveflow_ljspeech.yaml \
|
||||
--root=./data/LJSpeech-1.1 \
|
||||
--name=${ModelName} --parallel=true --use_gpu=true
|
||||
--name=${ModelName} --use_gpu=true
|
||||
```
|
||||
|
||||
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle import fluid
|
|||
|
||||
import utils
|
||||
from parakeet.utils import io
|
||||
from parakeet.models.waveflow import WaveFlow
|
||||
from waveflow import WaveFlow
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
|
|
|
@ -21,9 +21,9 @@ import numpy as np
|
|||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
|
||||
import utils
|
||||
from parakeet.models.waveflow import WaveFlow
|
||||
from parakeet.utils import io
|
||||
import utils
|
||||
from waveflow import WaveFlow
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
|
|
|
@ -26,7 +26,7 @@ from tensorboardX import SummaryWriter
|
|||
|
||||
import utils
|
||||
from parakeet.utils import io
|
||||
from parakeet.models.waveflow import WaveFlow
|
||||
from waveflow import WaveFlow
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
|
@ -40,11 +40,6 @@ def add_options_to_parser(parser):
|
|||
parser.add_argument(
|
||||
'--root', type=str, help="root path of the LJSpeech dataset")
|
||||
|
||||
parser.add_argument(
|
||||
'--parallel',
|
||||
type=utils.str2bool,
|
||||
default=True,
|
||||
help="option to use data parallel training")
|
||||
parser.add_argument(
|
||||
'--use_gpu',
|
||||
type=utils.str2bool,
|
||||
|
@ -66,11 +61,11 @@ def add_options_to_parser(parser):
|
|||
|
||||
def train(config):
|
||||
use_gpu = config.use_gpu
|
||||
parallel = config.parallel if use_gpu else False
|
||||
|
||||
# Get the rank of the current training process.
|
||||
rank = dg.parallel.Env().local_rank if parallel else 0
|
||||
nranks = dg.parallel.Env().nranks if parallel else 1
|
||||
rank = dg.parallel.Env().local_rank
|
||||
nranks = dg.parallel.Env().nranks
|
||||
parallel = nranks > 1
|
||||
|
||||
if rank == 0:
|
||||
# Print the whole config setting.
|
||||
|
@ -100,16 +95,7 @@ def train(config):
|
|||
|
||||
# Build model.
|
||||
model = WaveFlow(config, checkpoint_dir, parallel, rank, nranks, tb)
|
||||
model.build()
|
||||
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = io.load_latest_checkpoint(checkpoint_dir, rank)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
iteration = model.build()
|
||||
|
||||
while iteration < config.max_iterations:
|
||||
# Run one single training step.
|
||||
|
|
|
@ -21,11 +21,11 @@ import paddle.fluid.dygraph as dg
|
|||
from paddle import fluid
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
import utils
|
||||
from parakeet.utils import io
|
||||
from parakeet.modules import weight_norm
|
||||
from .data import LJSpeech
|
||||
from .waveflow_modules import WaveFlowLoss, WaveFlowModule
|
||||
from parakeet.models.waveflow import WaveFlowLoss, WaveFlowModule
|
||||
from data import LJSpeech
|
||||
import utils
|
||||
|
||||
|
||||
class WaveFlow():
|
||||
|
@ -93,13 +93,12 @@ class WaveFlow():
|
|||
parameter_list=waveflow.parameters())
|
||||
|
||||
# Load parameters.
|
||||
io.load_parameters(
|
||||
self.checkpoint_dir,
|
||||
self.rank,
|
||||
waveflow,
|
||||
optimizer,
|
||||
iteration = io.load_parameters(
|
||||
model=waveflow,
|
||||
optimizer=optimizer,
|
||||
checkpoint_dir=self.checkpoint_dir,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint)
|
||||
checkpoint_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
|
||||
# Data parallelism.
|
||||
|
@ -113,13 +112,11 @@ class WaveFlow():
|
|||
|
||||
else:
|
||||
# Load parameters.
|
||||
io.load_parameters(
|
||||
self.checkpoint_dir,
|
||||
self.rank,
|
||||
waveflow,
|
||||
iteration = io.load_parameters(
|
||||
model=waveflow,
|
||||
checkpoint_dir=self.checkpoint_dir,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint,
|
||||
dtype=self.dtype)
|
||||
checkpoint_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
|
||||
for layer in waveflow.sublayers():
|
||||
|
@ -128,6 +125,8 @@ class WaveFlow():
|
|||
|
||||
self.waveflow = waveflow
|
||||
|
||||
return iteration
|
||||
|
||||
def train_step(self, iteration):
|
||||
"""Train the model for one step.
|
||||
|
||||
|
@ -293,6 +292,5 @@ class WaveFlow():
|
|||
Returns:
|
||||
None
|
||||
"""
|
||||
io.save_latest_parameters(self.checkpoint_dir, iteration,
|
||||
self.waveflow, self.optimizer)
|
||||
io.save_latest_checkpoint(self.checkpoint_dir, iteration)
|
||||
io.save_parameters(self.checkpoint_dir, iteration, self.waveflow,
|
||||
self.optimizer)
|
||||
|
|
|
@ -12,4 +12,4 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from parakeet.models.waveflow.waveflow import WaveFlow
|
||||
from parakeet.models.waveflow.waveflow_modules import WaveFlowLoss, WaveFlowModule
|
||||
|
|
|
@ -18,6 +18,7 @@ import time
|
|||
import ruamel.yaml
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle.fluid.framework import convert_np_dtype_to_dtype_ as convert_np_dtype
|
||||
|
||||
|
||||
def is_main_process():
|
||||
|
@ -90,9 +91,8 @@ def load_parameters(model,
|
|||
optimizer=None,
|
||||
checkpoint_dir=None,
|
||||
iteration=None,
|
||||
checkpoint_path=None,
|
||||
dtype="float32"):
|
||||
"""Load a specific model checkpoint from disk.
|
||||
checkpoint_path=None):
|
||||
"""Load a specific model checkpoint from disk.
|
||||
|
||||
Args:
|
||||
model (obj): model to load parameters.
|
||||
|
@ -102,40 +102,37 @@ def load_parameters(model,
|
|||
iteration (int, optional): if specified, load the specific checkpoint,
|
||||
if not specified, load the latest one. Defaults to None.
|
||||
checkpoint_path (str, optional): if specified, load the checkpoint
|
||||
stored in the checkpoint_path. Defaults to None.
|
||||
dtype (str, optional): precision of the model parameters.
|
||||
Defaults to float32.
|
||||
stored in the checkpoint_path and the argument 'checkpoint_dir' will
|
||||
be ignored. Defaults to None.
|
||||
|
||||
Returns:
|
||||
iteration (int): number of iterations that the loaded checkpoint has
|
||||
been trained.
|
||||
"""
|
||||
if checkpoint_dir is not None and checkpoint_path is not None:
|
||||
raise ValueError(
|
||||
"Load from either from (checkpoint_dir and iteration) \n"
|
||||
"or checkpoint_path. Do not pass both.")
|
||||
if iteration is not None and checkpoint_dir is None:
|
||||
raise ValueError(
|
||||
"When iteration is specified, checkpoint_dir should not be None")
|
||||
|
||||
if checkpoint_dir is not None:
|
||||
if checkpoint_path is not None:
|
||||
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
||||
elif checkpoint_dir is not None:
|
||||
if iteration is None:
|
||||
iteration = _load_latest_checkpoint(checkpoint_dir)
|
||||
checkpoint_path = os.path.join(checkpoint_dir,
|
||||
"step-{}".format(iteration))
|
||||
if iteration == 0 and not os.path.exists(checkpoint_path):
|
||||
if iteration == 0:
|
||||
# if step-0 exist, it is also loaded
|
||||
return iteration
|
||||
checkpoint_path = os.path.join(checkpoint_dir,
|
||||
"step-{}".format(iteration))
|
||||
else:
|
||||
# checkpoint is not None
|
||||
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
||||
raise ValueError(
|
||||
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
|
||||
)
|
||||
|
||||
local_rank = dg.parallel.Env().local_rank
|
||||
model_dict, optimizer_dict = dg.load_dygraph(checkpoint_path)
|
||||
|
||||
# cast to desired data type
|
||||
state_dict = model.state_dict()
|
||||
# cast to desired data type, for mixed-precision training/inference.
|
||||
for k, v in model_dict.items():
|
||||
model_dict[k] = v.astype(dtype)
|
||||
if k in state_dict and convert_np_dtype(v.dtype) != state_dict[
|
||||
k].dtype:
|
||||
model_dict[k] = v.astype(state_dict[k].numpy().dtype)
|
||||
|
||||
model.set_dict(model_dict)
|
||||
print("[checkpoint] Rank {}: loaded model from {}.pdparams".format(
|
||||
|
|
Loading…
Reference in New Issue