Adapt the change in save & load
This commit is contained in:
parent
fccbf6d797
commit
618eb31ab4
|
@ -13,8 +13,8 @@ PaddlePaddle dynamic graph implementation of [WaveFlow: A Compact Flow-based Mod
|
||||||
├── synthesis.py # script for speech synthesis
|
├── synthesis.py # script for speech synthesis
|
||||||
├── train.py # script for model training
|
├── train.py # script for model training
|
||||||
├── utils.py # helper functions for e.g., model checkpointing
|
├── utils.py # helper functions for e.g., model checkpointing
|
||||||
├── parakeet/models/waveflow/data.py # dataset and dataloader settings for LJSpeech
|
├── data.py # dataset and dataloader settings for LJSpeech
|
||||||
├── parakeet/models/waveflow/waveflow.py # WaveFlow model high level APIs
|
├── waveflow.py # WaveFlow model high level APIs
|
||||||
└── parakeet/models/waveflow/waveflow_modules.py # WaveFlow model implementation
|
└── parakeet/models/waveflow/waveflow_modules.py # WaveFlow model implementation
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -48,12 +48,12 @@ python -u train.py \
|
||||||
--config=./configs/waveflow_ljspeech.yaml \
|
--config=./configs/waveflow_ljspeech.yaml \
|
||||||
--root=./data/LJSpeech-1.1 \
|
--root=./data/LJSpeech-1.1 \
|
||||||
--name=${ModelName} --batch_size=4 \
|
--name=${ModelName} --batch_size=4 \
|
||||||
--parallel=false --use_gpu=true
|
--use_gpu=true
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Save and Load checkpoints
|
#### Save and Load checkpoints
|
||||||
|
|
||||||
Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default.
|
Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default, where `${ModelName}` is the model name for one single experiment and it could be whatever you like.
|
||||||
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
|
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
|
||||||
|
|
||||||
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
|
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
|
||||||
|
@ -68,7 +68,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||||
python -u -m paddle.distributed.launch train.py \
|
python -u -m paddle.distributed.launch train.py \
|
||||||
--config=./configs/waveflow_ljspeech.yaml \
|
--config=./configs/waveflow_ljspeech.yaml \
|
||||||
--root=./data/LJSpeech-1.1 \
|
--root=./data/LJSpeech-1.1 \
|
||||||
--name=${ModelName} --parallel=true --use_gpu=true
|
--name=${ModelName} --use_gpu=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
|
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
|
||||||
|
|
|
@ -23,7 +23,7 @@ from paddle import fluid
|
||||||
|
|
||||||
import utils
|
import utils
|
||||||
from parakeet.utils import io
|
from parakeet.utils import io
|
||||||
from parakeet.models.waveflow import WaveFlow
|
from waveflow import WaveFlow
|
||||||
|
|
||||||
|
|
||||||
def add_options_to_parser(parser):
|
def add_options_to_parser(parser):
|
||||||
|
|
|
@ -21,9 +21,9 @@ import numpy as np
|
||||||
import paddle.fluid.dygraph as dg
|
import paddle.fluid.dygraph as dg
|
||||||
from paddle import fluid
|
from paddle import fluid
|
||||||
|
|
||||||
import utils
|
|
||||||
from parakeet.models.waveflow import WaveFlow
|
|
||||||
from parakeet.utils import io
|
from parakeet.utils import io
|
||||||
|
import utils
|
||||||
|
from waveflow import WaveFlow
|
||||||
|
|
||||||
|
|
||||||
def add_options_to_parser(parser):
|
def add_options_to_parser(parser):
|
||||||
|
|
|
@ -26,7 +26,7 @@ from tensorboardX import SummaryWriter
|
||||||
|
|
||||||
import utils
|
import utils
|
||||||
from parakeet.utils import io
|
from parakeet.utils import io
|
||||||
from parakeet.models.waveflow import WaveFlow
|
from waveflow import WaveFlow
|
||||||
|
|
||||||
|
|
||||||
def add_options_to_parser(parser):
|
def add_options_to_parser(parser):
|
||||||
|
@ -40,11 +40,6 @@ def add_options_to_parser(parser):
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'--root', type=str, help="root path of the LJSpeech dataset")
|
'--root', type=str, help="root path of the LJSpeech dataset")
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
'--parallel',
|
|
||||||
type=utils.str2bool,
|
|
||||||
default=True,
|
|
||||||
help="option to use data parallel training")
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'--use_gpu',
|
'--use_gpu',
|
||||||
type=utils.str2bool,
|
type=utils.str2bool,
|
||||||
|
@ -66,11 +61,11 @@ def add_options_to_parser(parser):
|
||||||
|
|
||||||
def train(config):
|
def train(config):
|
||||||
use_gpu = config.use_gpu
|
use_gpu = config.use_gpu
|
||||||
parallel = config.parallel if use_gpu else False
|
|
||||||
|
|
||||||
# Get the rank of the current training process.
|
# Get the rank of the current training process.
|
||||||
rank = dg.parallel.Env().local_rank if parallel else 0
|
rank = dg.parallel.Env().local_rank
|
||||||
nranks = dg.parallel.Env().nranks if parallel else 1
|
nranks = dg.parallel.Env().nranks
|
||||||
|
parallel = nranks > 1
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
# Print the whole config setting.
|
# Print the whole config setting.
|
||||||
|
@ -100,16 +95,7 @@ def train(config):
|
||||||
|
|
||||||
# Build model.
|
# Build model.
|
||||||
model = WaveFlow(config, checkpoint_dir, parallel, rank, nranks, tb)
|
model = WaveFlow(config, checkpoint_dir, parallel, rank, nranks, tb)
|
||||||
model.build()
|
iteration = model.build()
|
||||||
|
|
||||||
# Obtain the current iteration.
|
|
||||||
if config.checkpoint is None:
|
|
||||||
if config.iteration is None:
|
|
||||||
iteration = io.load_latest_checkpoint(checkpoint_dir, rank)
|
|
||||||
else:
|
|
||||||
iteration = config.iteration
|
|
||||||
else:
|
|
||||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
|
||||||
|
|
||||||
while iteration < config.max_iterations:
|
while iteration < config.max_iterations:
|
||||||
# Run one single training step.
|
# Run one single training step.
|
||||||
|
|
|
@ -21,11 +21,11 @@ import paddle.fluid.dygraph as dg
|
||||||
from paddle import fluid
|
from paddle import fluid
|
||||||
from scipy.io.wavfile import write
|
from scipy.io.wavfile import write
|
||||||
|
|
||||||
import utils
|
|
||||||
from parakeet.utils import io
|
from parakeet.utils import io
|
||||||
from parakeet.modules import weight_norm
|
from parakeet.modules import weight_norm
|
||||||
from .data import LJSpeech
|
from parakeet.models.waveflow import WaveFlowLoss, WaveFlowModule
|
||||||
from .waveflow_modules import WaveFlowLoss, WaveFlowModule
|
from data import LJSpeech
|
||||||
|
import utils
|
||||||
|
|
||||||
|
|
||||||
class WaveFlow():
|
class WaveFlow():
|
||||||
|
@ -93,13 +93,12 @@ class WaveFlow():
|
||||||
parameter_list=waveflow.parameters())
|
parameter_list=waveflow.parameters())
|
||||||
|
|
||||||
# Load parameters.
|
# Load parameters.
|
||||||
io.load_parameters(
|
iteration = io.load_parameters(
|
||||||
self.checkpoint_dir,
|
model=waveflow,
|
||||||
self.rank,
|
optimizer=optimizer,
|
||||||
waveflow,
|
checkpoint_dir=self.checkpoint_dir,
|
||||||
optimizer,
|
|
||||||
iteration=config.iteration,
|
iteration=config.iteration,
|
||||||
file_path=config.checkpoint)
|
checkpoint_path=config.checkpoint)
|
||||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||||
|
|
||||||
# Data parallelism.
|
# Data parallelism.
|
||||||
|
@ -113,13 +112,11 @@ class WaveFlow():
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Load parameters.
|
# Load parameters.
|
||||||
io.load_parameters(
|
iteration = io.load_parameters(
|
||||||
self.checkpoint_dir,
|
model=waveflow,
|
||||||
self.rank,
|
checkpoint_dir=self.checkpoint_dir,
|
||||||
waveflow,
|
|
||||||
iteration=config.iteration,
|
iteration=config.iteration,
|
||||||
file_path=config.checkpoint,
|
checkpoint_path=config.checkpoint)
|
||||||
dtype=self.dtype)
|
|
||||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||||
|
|
||||||
for layer in waveflow.sublayers():
|
for layer in waveflow.sublayers():
|
||||||
|
@ -128,6 +125,8 @@ class WaveFlow():
|
||||||
|
|
||||||
self.waveflow = waveflow
|
self.waveflow = waveflow
|
||||||
|
|
||||||
|
return iteration
|
||||||
|
|
||||||
def train_step(self, iteration):
|
def train_step(self, iteration):
|
||||||
"""Train the model for one step.
|
"""Train the model for one step.
|
||||||
|
|
||||||
|
@ -293,6 +292,5 @@ class WaveFlow():
|
||||||
Returns:
|
Returns:
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
io.save_latest_parameters(self.checkpoint_dir, iteration,
|
io.save_parameters(self.checkpoint_dir, iteration, self.waveflow,
|
||||||
self.waveflow, self.optimizer)
|
self.optimizer)
|
||||||
io.save_latest_checkpoint(self.checkpoint_dir, iteration)
|
|
||||||
|
|
|
@ -12,4 +12,4 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from parakeet.models.waveflow.waveflow import WaveFlow
|
from parakeet.models.waveflow.waveflow_modules import WaveFlowLoss, WaveFlowModule
|
||||||
|
|
|
@ -18,6 +18,7 @@ import time
|
||||||
import ruamel.yaml
|
import ruamel.yaml
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import paddle.fluid.dygraph as dg
|
import paddle.fluid.dygraph as dg
|
||||||
|
from paddle.fluid.framework import convert_np_dtype_to_dtype_ as convert_np_dtype
|
||||||
|
|
||||||
|
|
||||||
def is_main_process():
|
def is_main_process():
|
||||||
|
@ -90,9 +91,8 @@ def load_parameters(model,
|
||||||
optimizer=None,
|
optimizer=None,
|
||||||
checkpoint_dir=None,
|
checkpoint_dir=None,
|
||||||
iteration=None,
|
iteration=None,
|
||||||
checkpoint_path=None,
|
checkpoint_path=None):
|
||||||
dtype="float32"):
|
"""Load a specific model checkpoint from disk.
|
||||||
"""Load a specific model checkpoint from disk.
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model (obj): model to load parameters.
|
model (obj): model to load parameters.
|
||||||
|
@ -102,40 +102,37 @@ def load_parameters(model,
|
||||||
iteration (int, optional): if specified, load the specific checkpoint,
|
iteration (int, optional): if specified, load the specific checkpoint,
|
||||||
if not specified, load the latest one. Defaults to None.
|
if not specified, load the latest one. Defaults to None.
|
||||||
checkpoint_path (str, optional): if specified, load the checkpoint
|
checkpoint_path (str, optional): if specified, load the checkpoint
|
||||||
stored in the checkpoint_path. Defaults to None.
|
stored in the checkpoint_path and the argument 'checkpoint_dir' will
|
||||||
dtype (str, optional): precision of the model parameters.
|
be ignored. Defaults to None.
|
||||||
Defaults to float32.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
iteration (int): number of iterations that the loaded checkpoint has
|
iteration (int): number of iterations that the loaded checkpoint has
|
||||||
been trained.
|
been trained.
|
||||||
"""
|
"""
|
||||||
if checkpoint_dir is not None and checkpoint_path is not None:
|
if checkpoint_path is not None:
|
||||||
raise ValueError(
|
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
||||||
"Load from either from (checkpoint_dir and iteration) \n"
|
elif checkpoint_dir is not None:
|
||||||
"or checkpoint_path. Do not pass both.")
|
|
||||||
if iteration is not None and checkpoint_dir is None:
|
|
||||||
raise ValueError(
|
|
||||||
"When iteration is specified, checkpoint_dir should not be None")
|
|
||||||
|
|
||||||
if checkpoint_dir is not None:
|
|
||||||
if iteration is None:
|
if iteration is None:
|
||||||
iteration = _load_latest_checkpoint(checkpoint_dir)
|
iteration = _load_latest_checkpoint(checkpoint_dir)
|
||||||
checkpoint_path = os.path.join(checkpoint_dir,
|
if iteration == 0:
|
||||||
"step-{}".format(iteration))
|
|
||||||
if iteration == 0 and not os.path.exists(checkpoint_path):
|
|
||||||
# if step-0 exist, it is also loaded
|
# if step-0 exist, it is also loaded
|
||||||
return iteration
|
return iteration
|
||||||
|
checkpoint_path = os.path.join(checkpoint_dir,
|
||||||
|
"step-{}".format(iteration))
|
||||||
else:
|
else:
|
||||||
# checkpoint is not None
|
raise ValueError(
|
||||||
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
|
||||||
|
)
|
||||||
|
|
||||||
local_rank = dg.parallel.Env().local_rank
|
local_rank = dg.parallel.Env().local_rank
|
||||||
model_dict, optimizer_dict = dg.load_dygraph(checkpoint_path)
|
model_dict, optimizer_dict = dg.load_dygraph(checkpoint_path)
|
||||||
|
|
||||||
# cast to desired data type
|
state_dict = model.state_dict()
|
||||||
|
# cast to desired data type, for mixed-precision training/inference.
|
||||||
for k, v in model_dict.items():
|
for k, v in model_dict.items():
|
||||||
model_dict[k] = v.astype(dtype)
|
if k in state_dict and convert_np_dtype(v.dtype) != state_dict[
|
||||||
|
k].dtype:
|
||||||
|
model_dict[k] = v.astype(state_dict[k].numpy().dtype)
|
||||||
|
|
||||||
model.set_dict(model_dict)
|
model.set_dict(model_dict)
|
||||||
print("[checkpoint] Rank {}: loaded model from {}.pdparams".format(
|
print("[checkpoint] Rank {}: loaded model from {}.pdparams".format(
|
||||||
|
|
Loading…
Reference in New Issue